A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsq5pv4ipgrlr21ol60dipeihfqcn3sdq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-rod posterior correction only with halo-femoral traction for the management of adult neuromuscular scoliosis (> 100°) with severe pelvic obliquity: a minimum 5-year follow-up. | LitMetric

AI Article Synopsis

  • The study investigates the safety and effectiveness of a surgical technique called multi-rod posterior correction only (MRPCO) combined with halo-femoral traction (HFT) for adults with severe neuromuscular scoliosis (NMS) and pelvic obliquity (PO).
  • Thirteen adult patients underwent the procedure, resulting in significant improvements in spinal curvature, pelvic positioning, and trunk shift, with notable correction rates observed postoperatively.
  • The patients also reported substantial reductions in pain (VAS score) and disability (ODI score) after the treatment, suggesting that this approach can enhance their overall quality of life.

Article Abstract

Background: Many patients with neuromuscular scoliosis (NMS) experience a variety of difficult medical problems that aggravate the development effects of progressive scoliosis and pelvic obliquity (PO). The objective of the current study was to assess the safety and effectiveness of multi-rod posterior correction only (MRPCO) with halo-femoral traction (HFT) for the management of adult NMS (> 100°) with severe PO.

Methods: From 2012 to 2017, 13 adult patients who suffered from NMS (> 100°) with severe PO underwent MRPCO with HFT. The radiography parameters in a sitting position, such as the coronal Cobb angle of the main curve, the PO and the trunk shift (TS), were measured at the preoperative, postoperative and final follow-up stages. The preoperative and final follow-up assessment of the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI) was taken.

Results: The average follow-up span was 68.15 ± 6.78 months. There was decreased postoperative coronal Cobb angle with an average mean of 125.24° ± 11.78° to 47.55° ± 12.10°, with a correction rate of 62.43%; the PO was reduced to 6.25° ± 1.63° from 36.93° ± 4.25° with a correction rate of 83.07%; the TS was reduced to 2.41 cm ± 1.40 cm from 9.19 cm ± 3.07 cm. There was significant improvement in all parameters compared to the preoperative data. The VAS score reduced from 4.77 ± 0.93 to 0.69 ± 0.75, and the ODI score reduced from 65.38 ± 16.80 to 28.62 ± 12.29 at the final follow-up.

Conclusions: Treatment of adult NMS (> 100°) with severe PO could be safe and effective with MRPCO with HFT. In order to obtain the optimum sitting balance, this could reduce the prevalence of complications and rectify the curvature and the correction of PO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585782PMC
http://dx.doi.org/10.1186/s13018-023-04285-4DOI Listing

Publication Analysis

Top Keywords

> 100° severe
16
nms > 100°
12
multi-rod posterior
8
posterior correction
8
halo-femoral traction
8
management adult
8
neuromuscular scoliosis
8
pelvic obliquity
8
adult nms
8
mrpco hft
8

Similar Publications

We report a case in which a giant hepatic cyst located at the hepatic hilum and compressing the inferior vena cava was safely treated laparoscopically with careful attention to hemodynamics in a difficult fenestrated resection in a patient with severe kyphosis. The anatomic location of the cyst was evaluated preoperatively via 3D reconstruction of computed tomography images to identify a site where safe fenestrated resection could be performed. This was challenging because the surgical field was narrow due to the presence of severe kyphosis, and there was a risk of damage to surrounding organs during fenestrated resection.

View Article and Find Full Text PDF

Integrated Oxygen-Constraining Strategy for Ni-Rich Layered Oxide Cathodes.

ACS Nano

December 2024

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Surface engineering is sought to stabilize nickel-rich layered oxide cathodes in high-energy-density lithium-ion batteries, which suffer from severe surface oxygen loss and rapid structure degradation, especially during deep delithiation at high voltages or high temperatures. Here, we propose a well-designed oxygen-constraining strategy to address the crisis of oxygen evolution. By integrating a La, Fe gradient diffusion layer and a LaFeO coating into the Ni-rich layered particles, along with incorporating an antioxidant binder into the electrodes, three progressive lines of defense are constructed: immobilizing the lattice oxygen at the subsurface, blocking the released oxygen at the interface, and capturing the residual singlet oxygen on the external surface.

View Article and Find Full Text PDF

Self-maintenance of zonal hepatocytes during adult homeostasis and their complex plasticity upon distinct liver injuries.

Cell Rep

December 2024

Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Hepatocytes are organized into distinct zonal subsets across the liver lobule, yet their contributions to liver homeostasis and regeneration remain controversial. Here, we developed multiple genetic lineage-tracing mouse models to systematically address this. We found that the liver lobule can be divided into two major zonal and molecular hepatocyte populations marked by Cyp2e1 or Gls2.

View Article and Find Full Text PDF

Cell therapy with human IL-10-producing ILC2s limits xenogeneic graft-versus-host disease by inhibiting pathogenic T cell responses.

Cell Rep

December 2024

Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada. Electronic address:

Interleukin-10 (IL-10)-producing group 2 innate lymphoid cells (ILC2) regulate inflammatory immune responses, yet their therapeutic potential remains largely unexplored. Here, we demonstrate that cell therapy with human ILC2 inhibits pathogenic T cell responses in humanized mouse models of graft-versus-host disease (GVHD), resulting in reduced GVHD severity and improved overall survival without limiting the graft-versus-leukemia effect. ILC2 conferred superior protection from GVHD than IL-10 ILC2s, and blocking IL-10 and IL-4 abrogated ILC2 protective effects, indicating that these cytokines are important for the protective effects of ILC2.

View Article and Find Full Text PDF

OTUD5 Protects Dopaminergic Neurons by Promoting the Degradation of α-Synuclein in Parkinson's Disease Model.

Adv Sci (Weinh)

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China.

Defective clearance and accumulation of α-synuclein (α-Syn) is the key pathogenic factor in Parkinson's disease (PD). Recent studies emphasize the importance of E3 ligases in regulating the degradation of α-Syn. However, the molecular mechanisms by which deubiquitinases regulate α-Syn degradation are scarcely studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!