Purpose: Cone-beam breast CT (CBBCT) has an inherent limitation that the axilla cannot be imaged in its entirety. We aimed to develop and validate a nomogram based on clinical factors and contrast-enhanced (CE) CBBCT radiomics features to predict axillary lymph node (ALN) metastasis and complement limited axilla coverage.
Material And Methods: This retrospective study included 312 patients with breast cancer from two hospitals who underwent CE-CBBCT examination in a clinical trial (NCT01792999) during 2012-2020. Patients from TCIH comprised training set (n = 176) and validation set (n = 43), and patients from SYSUCC comprised external test set (n = 93). 3D ROIs were delineated manually and radiomics features were extracted by 3D Slicer software. RadScore was calculated and radiomics model was constructed after feature selection. Clinical model was built on independent predictors. Nomogram was developed with independent clinical predictors and RadScore. Diagnostic performance was compared among three models by ROC curve, and decision curve analysis (DCA) was used to evaluate the clinical utility of nomogram.
Results: A total of 139 patients were ALN positive and 173 patients were negative. Twelve radiomics features remained after feature selection. Location and focality were selected as independent predictors for ALN status. The AUC of nomogram in external test set was higher than that of clinical model (0.80 vs. 0.66, p = 0.012). DCA demonstrated that the nomogram had higher overall net benefit than that of clinical model.
Conclusion: The nomogram combined CE-CBBCT-based radiomics features and clinical factors could have potential in distinguishing ALN positive from negative and addressing the limitation of axilla coverage in CBBCT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-023-01731-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!