AI Article Synopsis

  • Riverine predacious beetles (RPB) are diverse creatures in freshwater ecosystems, influenced by natural water flow and landscape features.
  • This study investigates their genetic diversity and connectivity, focusing on two main hypotheses related to their shared evolutionary history and population structure based on river basins.
  • Findings show significant variations in genetic diversity among RPB, with evidence of demographic expansion and minimal isolation by distance, indicating that their migration is constrained by watershed boundaries.

Article Abstract

Riverine predacious beetles (RPB) (Carabidae, Staphylinidae) are highly diverse and numerous elements of riverine ecosystems. Their historical and contemporary distribution and diversity are highly dependent on natural flow regimes and topography of watercourses. Despite broad knowledge of their ecology, data on population genetic diversity and connectivity are lacking. This study aimed to fill this gap in order to solve two principal hypotheses assuming (i) congruence of phylogeographic patterns observed for RPB indicating that they share a common history and the ecological adaptations to the dynamic environment, (ii) genetic structuration of populations according to river basins. The Carpathian populations of four ground beetles and three rove beetles were examined using cytochrome oxidase and arginine kinase sequencing. There are substantial differences in RPB demographic history and current genetic diversity. Star-like phylogeny of Bembidion and complex haplotype networks of Paederus/Paederidus, with some haplotypes being drainage-specific and others found in distant populations, indicate a general lack of isolation by distance. Signs of recent demographic expansion were detected for most RPB with the latest population collapse for some rove beetles. To some extent, migration of examined species has to be limited by watersheds. Observed phylogeographic patterns are essential for correctly understanding RPB meta-population functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587157PMC
http://dx.doi.org/10.1038/s41598-023-44922-wDOI Listing

Publication Analysis

Top Keywords

phylogeographic patterns
12
congruence phylogeographic
8
patterns observed
8
riverine predacious
8
predacious beetles
8
genetic diversity
8
rove beetles
8
beetles
5
rpb
5
limited congruence
4

Similar Publications

Origin and Genealogy of Rare mtDNA Haplotypes Detected in the Serbian Population.

Genes (Basel)

January 2025

Group for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.

: The Balkan Peninsula has served as an important migration corridor between Asia Minor and Europe throughout humankind's history and a refugium during the Last Glacial Maximum. Past migrations such as the Neolithic expansion, Bronze Age migrations, and the settlement of Slavic tribes in the Early Middle Ages, are well known for their impact on shaping the genetic pool of contemporary Balkan populations. They have contributed to the high genetic diversity of the region, especially in mitochondrial DNA (mtDNA) lineages.

View Article and Find Full Text PDF

This study aims to enhance our understanding of the temporal and spatial processes scales governing the evolutionary diversification of Neotropical birds with Trans- and Cis-Andean populations of the species from South and Central America. Through a multilocus analysis of the mitochondrial (CytB and ND2) and nuclear genes (I7BF, I5BF, and G3PDH) of 41 samples representing six subspecies, we describe the existing molecular lineages of , and estimate their demographic dynamics. We used Ecological Niche Modeling (ENM) with six different algorithms to predict the potential distribution of in both present-day and past scenarios, examining the overlap climatic niche between Cis- and Trans-Andean lineages.

View Article and Find Full Text PDF

Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022.

View Article and Find Full Text PDF

Pleistocene Refugia Inferred from Molecular Evidence in a Forest-Dwelling Harvestman (Arachnida, Opiliones, Gonyleptidae) Support a Biogeographic Split in Subtropical Argentina.

Integr Zool

January 2025

Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina.

This paper addresses the population genetic structure of the forest-dwelling gonyleptid Geraeocormobius sylvarum (Arachnida, Opiliones). Phylogeographic analyses using cytochrome oxidase subunit I (COI) were conducted on 186 individuals from 43 localities in Argentina and Paraguay, arranged into nine operational sectors and defined upon geographic and vegetation features. Given the current environmental uniformity, it was aimed to assess whether molecular fingerprints of G.

View Article and Find Full Text PDF

Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!