Efficacious stem cell-based therapies for traumatic brain injury (TBI) depend on successful delivery, migration, and engraftment of stem cells to induce neuroprotection. L-myc expressing human neural stem cells (LMNSC008) demonstrate an inherent tropism to injury sites after intranasal (IN) administration. We hypothesize that IN delivered LMNSC008 cells migrate to primary and secondary injury sites and modulate biomarkers associated with neuroprotection and tissue regeneration. To test this hypothesis, immunocompetent adult female rats received either controlled cortical impact injury or sham surgery. LMNSC008 cells or a vehicle were administered IN on postoperative days 7, 9, 11, 13, 15, and 17. The distribution and migration of eGFP-expressing LMNSC008 cells were quantified over 1 mm-thick optically cleared (CLARITY) coronal brain sections from TBI and SHAM controls. NSC migration was observed along white matter tracts projecting toward the hippocampus and regions of TBI. ELISA and Nanostring assays revealed a shift in tissue gene expression in LMNSC008 treated rats relative to controls. LMNSC008 treatment reduced expression of genes and pathways involved in inflammatory response, microglial function, and various cytokines and receptors. Our proof-of-concept studies, although preliminary, support the rationale of using intranasal delivery of LMNSC008 cells for functional studies in preclinical models of TBI and provide support for potential translatability in TBI patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587115 | PMC |
http://dx.doi.org/10.1038/s41598-023-44426-7 | DOI Listing |
Sci Rep
October 2023
Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
Efficacious stem cell-based therapies for traumatic brain injury (TBI) depend on successful delivery, migration, and engraftment of stem cells to induce neuroprotection. L-myc expressing human neural stem cells (LMNSC008) demonstrate an inherent tropism to injury sites after intranasal (IN) administration. We hypothesize that IN delivered LMNSC008 cells migrate to primary and secondary injury sites and modulate biomarkers associated with neuroprotection and tissue regeneration.
View Article and Find Full Text PDFEfficacious stem cell-based therapies for traumatic brain injury (TBI) depend on successful delivery, migration, and engraftment of stem cells to induce neuroprotection. L-myc expressing human neural stem cells (LMNSC008) demonstrate an inherent tropism to injury sites after intranasal (IN) administration. We hypothesize that IN delivered LMNSC008 cells migrate to primary and secondary injury sites and modulate biomarkers associated with neuroprotection and tissue regeneration.
View Article and Find Full Text PDFStem Cells Int
May 2021
Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
As the success of stem cell-based therapies is contingent on efficient cell delivery to damaged areas, neural stem cells (NSCs) have promising therapeutic potential because they inherently migrate to sites of central nervous system (CNS) damage. To explore the possibility of NSC-based therapy after traumatic brain injury (TBI), isoflurane-anesthetized adult male rats received a controlled cortical impact (CCI) of moderate severity (2.8 mm deformation at 4 m/s) or sham injury (i.
View Article and Find Full Text PDFPLoS One
January 2019
Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America.
Background: Preclinical studies indicate that neural stem cells (NSCs) can limit or reverse central nervous system (CNS) damage through delivery of therapeutic agents for cell regeneration. Clinical translation of cell-based therapies raises concerns about long-term stability, differentiation and fate, and absence of tumorigenicity of these cells, as well as manufacturing time required to produce therapeutic cells in quantities sufficient for clinical use. Allogeneic NSC lines are in growing demand due to challenges inherent in using autologous stem cells, including production costs that limit availability to patients.
View Article and Find Full Text PDFStem Cell Reports
September 2016
Department of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA. Electronic address:
Pre-clinical studies indicate that neural stem cells (NSCs) can limit or reverse CNS damage through direct cell replacement, promotion of regeneration, or delivery of therapeutic agents. Immortalized NSC lines are in growing demand due to the inherent limitations of adult patient-derived NSCs, including availability, expandability, potential for genetic modifications, and costs. Here, we describe the generation and characterization of a new human fetal NSC line, immortalized by transduction with L-MYC (LM-NSC008) that in vitro displays both self-renewal and multipotent differentiation into neurons, oligodendrocytes, and astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!