Understanding the genomic underpinnings of thermal adaptation is a hot topic in eco-evolutionary studies of parasites. Marine heteroxenous parasites have complex life cycles encompassing a free-living larval stage, an ectothermic intermediate host and a homeothermic definitive host, thus representing compelling systems for the study of thermal adaptation. The Antarctic anisakid Contracaecum osculatum sp. D is a marine parasite able to survive and thrive both at very cold and warm temperatures within the environment and its hosts. Here, a de novo transcriptome of C. osculatum sp. D was generated for the first time, by performing RNA-Seq experiments on a set of individuals exposed to temperatures experienced by the nematode during its life cycle. The analysis generated 425,954,724 reads, which were assembled and then annotated. The high-quality assembly was validated, achieving over 88% mapping against the transcriptome. The transcriptome of this parasite will represent a valuable genomic resource for future studies aimed at disentangling the genomic architecture of thermal tolerance and metabolic pathways related to temperature stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587230 | PMC |
http://dx.doi.org/10.1038/s41597-023-02591-4 | DOI Listing |
J Exp Biol
January 2025
Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing, 100071, China.
At present, the parameters of the controllers in hot rolling roughing microtension control systems are not adaptively adjustable to variations in working conditions, which compromises both width accuracy and production stability. To address this issue, this paper introduces an ATKB-PID adaptive micro tension control method. This method incorporates a linear attention layer and utilizes a K-Nearest Neighbors (KNN) algorithm to predict the optimal learning rate and inertia coefficient under actual operating conditions.
View Article and Find Full Text PDFSci Rep
January 2025
ENET Centre, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems.
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!