Electric control of spin transitions at the atomic scale.

Nat Commun

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.

Published: October 2023

Electric control of spins has been a longstanding goal in the field of solid state physics due to the potential for increased efficiency in information processing. This efficiency can be optimized by transferring spintronics to the atomic scale. We present electric control of spin resonance transitions in single TiH molecules by employing electron spin resonance scanning tunneling microscopy (ESR-STM). We find strong bias voltage dependent shifts in the ESR signal of about ten times its line width. We attribute this to the electric field in the tunnel junction, which induces a displacement of the spin system changing the g-factor and the effective magnetic field of the tip. We demonstrate direct electric control of the spin transitions in coupled TiH dimers. Our findings open up new avenues for fast coherent control of coupled spin systems and expands on the understanding of spin electric coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587172PMC
http://dx.doi.org/10.1038/s41467-023-42287-2DOI Listing

Publication Analysis

Top Keywords

electric control
16
control spin
12
spin transitions
8
atomic scale
8
scale electric
8
spin resonance
8
spin
7
electric
6
transitions atomic
4
control
4

Similar Publications

Hierarchical braking accurate control of electrohydraulic composite braking system for electric vehicles.

ISA Trans

January 2025

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:

For the electrohydraulic composite braking system, the general total braking force calculation strategy frequently ignores the resist forces, thereby cannot track the braking intention of driver perfectly. Moreover, the torque allocation process reduces the control reliability and energy recovery effect. In this research, a novel hierarchical braking accurate control (HBAC) algorithm is designed to achieve both the control accuracy and the ideal energy recovery efficiency.

View Article and Find Full Text PDF

A novel separated OPECT aptasensor based on MOF-derived BiVO/BiS type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules.

Talanta

January 2025

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:

Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.

View Article and Find Full Text PDF

Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system.

J Hazard Mater

January 2025

Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:

Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.

View Article and Find Full Text PDF

Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!