Breeding for resilience to climate change requires considering adaptive traits such as plant architecture, stomatal conductance and growth, beyond the current selection for yield. Robotized indoor phenotyping allows measuring such traits at high throughput for speed breeding, but is often considered as non-relevant for field conditions. Here, we show that maize adaptive traits can be inferred in different fields, based on genotypic values obtained indoor and on environmental conditions in each considered field. The modelling of environmental effects allows translation from indoor to fields, but also from one field to another field. Furthermore, genotypic values of considered traits match between indoor and field conditions. Genomic prediction results in adequate ranking of genotypes for the tested traits, although with lesser precision for elite varieties presenting reduced phenotypic variability. Hence, it distinguishes genotypes with high or low values for adaptive traits, conferring either spender or conservative strategies for water use under future climates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587076PMC
http://dx.doi.org/10.1038/s41467-023-42298-zDOI Listing

Publication Analysis

Top Keywords

adaptive traits
16
robotized indoor
8
indoor phenotyping
8
phenotyping allows
8
genomic prediction
8
field conditions
8
genotypic values
8
traits
7
field
6
allows genomic
4

Similar Publications

Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.

View Article and Find Full Text PDF

Background: Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations.

View Article and Find Full Text PDF

Molecular diversity and genetic potential of new maize inbred lines across varying sowing conditions in arid environment.

Sci Rep

January 2025

Department of Environmental Management, Institute of Environmental Engineering, People's Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation.

Developing high-yielding and resilient maize hybrids is essential to ensure its sustainable production with the ongoing challenges of considerable shifts in global climate. This study aimed to explore genetic diversity among exotic and local maize inbred lines, evaluate their combining ability, understand the genetic mechanisms influencing ear characteristics and grain yield, and identify superior hybrids suited for timely and late sowing conditions. Seven local and exotic maize inbred lines were genotyped using SSR (Simple Sequence Repeat) markers to assess their genetic diversity.

View Article and Find Full Text PDF

Genome assemblies and other genomic tools for understanding insect adaptation.

Curr Opin Insect Sci

January 2025

Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil. Electronic address:

Insects, the most diverse group of animals, exhibit remarkable adaptability, playing both crucial and problematic roles in ecosystems. Recent advancements in genomic technologies, such as high-throughput sequencing, have provided unprecedented insights into the genetic foundations of insect adaptation. This review explores key methodologies, including de novo and reference-guided genome assemblies, and highlights cutting-edge technologies like second and third-generation sequencing, and hybrid techniques.

View Article and Find Full Text PDF

Characteristics of neutrophil chemotaxis in bottlenose dolphin (Tursiops truncatus).

Vet Immunol Immunopathol

January 2025

Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:

Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!