Substrate-Mediator Duality of 1,4-Dicyanobenzene in Electrochemical C(sp )-C(sp ) Bond Formation with Alkyl Bromides.

Angew Chem Int Ed Engl

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Published: December 2023

Electrochemical approaches to form C(sp )-C(sp ) bonds have focused on coupling C(sp ) electrophiles that form stabilized carbon-centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp ) coupling partners owing to their availability and cost-effectiveness, their tendency to undergo radical-radical homocoupling makes them challenging substrates for electroreductive cross-coupling. Herein, we disclose a metal-free regioselective cross-coupling of 1,4-dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4-dicyanobenzene radical anions, leading to negligible homocoupling and high cross-selectivity to form 1,4-alkyl cyanobenzenes. The cross-coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp ) precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202312128DOI Listing

Publication Analysis

Top Keywords

alkyl bromides
12
csp -csp
8
electrochemical approaches
8
csp
5
substrate-mediator duality
4
duality 14-dicyanobenzene
4
14-dicyanobenzene electrochemical
4
electrochemical csp
4
-csp bond
4
bond formation
4

Similar Publications

Secondary Alkylation of Arenes via the Borono-Catellani Strategy.

J Am Chem Soc

January 2025

Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

A modular platform technology for the synthesis of α-aryl carbonyl derivatives via Borono-Catellani-type secondary alkylation of arenes is presented. This practical method features a broad substrate scope regarding aryl boronic acid catechol esters, secondary alkyl bromides, and diversified terminating reagents (e.g.

View Article and Find Full Text PDF

This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I) complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the synthesis of chiral tridentate pincer phosphines to a concise 1-2 step process, contrary to conventional, labor-intensive multistep procedures.

View Article and Find Full Text PDF

We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.

View Article and Find Full Text PDF

1,4-Dibenzodiazepines, an important component of nitrogen-containing heterocycles, are widely present in drugs. Herein, we developed a photochemical radical cascade cyclization reaction of isocyanides with α-carbonyl bromides under mild conditions. A sequence of 11-alkyl-substituted 1,4-dibenzodiazepines were produced in 53%-85% yields, demonstrating excellent tolerance towards various functional groups.

View Article and Find Full Text PDF

Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!