A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces. | LitMetric

Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces.

Langmuir

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Published: October 2023

Despite intensive investigations on the droplet receding contact angle on superhydrophobic surfaces, i.e., a key parameter characterizing surface wettability and adhesion, the quantitative correlation between the surface structure mechanical properties (softness) and the droplet receding contact angles remains vague. By systematically varying the geometric dimensions and mechanical properties of soft pillar arrays, we find that the droplet receding contact angles decrease with the decrease in the pillar spring constant. Most surprisingly, the densely packed pillar arrays may result in larger receding contact angles than those on sparsely packed pillars, opposing the understanding of rigid pillar arrays, where the receding contact angles increase with a decrease in the packing density of pillars. This is attributed to the collective effects of capillarity and elasticity, where the energy consumed by the sliding contact line, the energy stored in the distorted liquid-vapor interface, and the energy stored in the deflected pillar contribute to the droplet depinning characteristics. We develop an analytical model to predict the droplet receding contact angles on soft superhydrophobic pillar arrays with knowledge of the material intrinsic receding contact angle, the pillar geometry, and the pillar mechanical properties. The predictions are corroborated by the experimental data measured in this and prior studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c02667DOI Listing

Publication Analysis

Top Keywords

receding contact
32
contact angles
24
droplet receding
20
pillar arrays
16
mechanical properties
12
contact
9
receding
8
angles soft
8
soft superhydrophobic
8
superhydrophobic surfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!