Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phox and converted it to a bivalent small-molecule p47phox-p22phox inhibitor ( = 20 μM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.3c01548DOI Listing

Publication Analysis

Top Keywords

bivalent small-molecule
8
small-molecule p47phox-p22phox
8
nox2
5
targeting nox2
4
bivalent
4
nox2 bivalent
4
p47phox-p22phox inhibitors
4
inhibitors nicotinamide
4
nicotinamide adenine
4
adenine dinucleotide
4

Similar Publications

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a neurodegenerative pathology caused by accumulation of mutant neuroserpin (NS) polymers inside the endoplasmic reticulum (ER) of neurons, leading to cellular toxicity and neuronal death. To date, there is no cure for FENIB, and only palliative care is available for FENIB patients, underlining the urgency to develop therapeutic strategies. The purpose of this work was to create a cellular system designed for testing small molecules able to reduce the formation of NS polymers.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors.

View Article and Find Full Text PDF
Article Synopsis
  • - The discovery of cereblon (CRBN) as the target of thalidomide transformed the targeted protein degradation (TPD) field by introducing bivalent degraders that utilize ubiquitin-mediated pathways.
  • - Recently, low-molecular-weight molecular glue degraders (MGDs) have emerged, providing a new approach to TPD with beneficial properties suited for small-molecule treatments.
  • - This review explores the development of MGDs, including specific case studies and design principles, while also discussing the collaborative innovations within the chemical space of molecular glues.
View Article and Find Full Text PDF

Radiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic γ- and β-emitting isotope Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Gemini was synthesized by linking 2 -2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker.

View Article and Find Full Text PDF

Discovery of Potent Degraders of the Dengue Virus Envelope Protein.

Adv Sci (Weinh)

October 2024

Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Palo Alto, CA, 94305, USA.

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here, it is reported that the development of small molecule degraders of the envelope (E) protein of dengue virus. Two classes of bivalent E-degraders are developed by linking two previously reported E-binding small molecules, GNF-2, and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4 ligase to effect proteosome-mediated degradation of the E protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!