A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers. | LitMetric

Reinforcement learning (RL) is a powerful technique that allows agents to learn optimal decision-making policies through interactions with an environment. However, traditional RL algorithms suffer from several limitations such as the need for large amounts of data and long-term credit assignment, i.e. the problem of determining which actions actually produce a certain reward. Recently, Transformers have shown their capacity to address these constraints in this area of learning in an offline setting. This paper proposes a framework that uses Transformers to enhance the training of online off-policy RL agents and address the challenges described above through self-attention. The proposal introduces a hybrid agent with a mixed policy that combines an online off-policy agent with an offline Transformer agent using the Decision Transformer architecture. By sequentially exchanging the experience replay buffer between the agents, the agent's learning training efficiency is improved in the first iterations and so is the training of Transformer-based RL agents in situations with limited data availability or unknown environments.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S012906572350065XDOI Listing

Publication Analysis

Top Keywords

online off-policy
12
reinforcement learning
8
hybrid online
4
off-policy reinforcement
4
learning
4
agent
4
learning agent
4
agent framework
4
framework supported
4
supported transformers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!