Construction of an ultrasensitive dual-mode chiral molecules sensing platform based on molecularly imprinted polymer modified bipolar electrode.

Biosens Bioelectron

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Published: January 2024

Chiral molecules are abundant in nature. Phenylketonuria (PKU) is caused by the abnormal transformation of chiral molecules L-phenylalanine (L-Phe) in the human blood, which can cause irreversible harm to the human body. In this work, we documented an electrochemiluminescent (ECL) dual-mode sensor platform based on molecularly imprinted polymer (MIP) modified closed bipolar electrodes for high sensitivity detection of L-Phe and D-phenylalanine (D-Phe). In the anode chamber of a bipolar electrode modified with phenylalanine imprinting, Ru (bpy) underwent a redox reaction to produce a chemiluminescence response under the stimulation of a driving voltage. At the same time, the reduction of the cathode film of the bipolar electrode was promoted, and the color changed from dark blue to nearly white. Thus, the dual-mode detection of target molecules is realized. The detection range of the sensor for phenylalanine reached 0.01-10,000 nM, and the detection limits of L-Phe and D-Phe were 3.9 pM and 4.6 pM (S/N = 3), respectively. This dual-mode system achieved high stability and high specificity, and also successfully realized the detection of actual samples, which is expected to achieve future clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115759DOI Listing

Publication Analysis

Top Keywords

chiral molecules
12
bipolar electrode
12
platform based
8
based molecularly
8
molecularly imprinted
8
imprinted polymer
8
realized detection
8
detection
5
construction ultrasensitive
4
dual-mode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!