Background: Ferroptosis is an emerging iron-dependent programmed cell death mode characterized by lipid peroxidation and iron accumulation, closely associated with Hepatocellular Carcinoma (HCC) progression. Although the impact of Polyphyllin I (PPI), a prominent bioactive constituent derived from Paris polyphylla, on diverse malignancies has been established, the specific role and potential mechanistic pathways through which PPI modulates ferroptosis in HCC remain elusive.
Purpose: This study aimed to elucidate the anti-cancer properties and potential mechanisms of PPI in inducing ferroptosis and triggering mitochondrial injury in HCC.
Methods: Cell viability was assessed using CCK-8 assays. EdU proliferation and colony formation assays were employed to evaluate cell proliferation. A wound-healing assay was performed to assess cell migration. Transwell assay was utilized to evaluate cell invasion. Ferroptosis was evaluated through the utilization of a FerroOrange fluorescent probe, malondialdehyde (MDA) and reduced glutathione (GSH) assay kits, DCFH-DA fluorescent probe, western blotting, and transmission electron microscopy (TEM) analysis. Molecular docking, immunofluorescence, and western blotting were employed to predict and validate the binding and interaction of PPI with Nrf2, HO-1, xCT, and GPX4. Mitochondrial structure and membrane potential changes were evaluated using JC-1 and Mito Tracker Green fluorescent probes. A nude mice xenograft model was constructed to determine the inhibitory effects and the levels of ferroptosis of PPI on HCC through hematoxylin and eosin (H&E), Prussian blue reaction, immunofluorescence staining, immunohistochemistry, and western blotting analysis, in vivo.
Results: PPI exhibited dose-dependent inhibitory effects on the proliferation, invasion, and metastasis of HCC cells mediated by increasing reactive oxygen species (ROS) and MDA levels, promoting Fe accumulation, depleting GSH, and suppressing the expression of xCT and GPX4, thereby inducing ferroptosis in HCC. The induction of ferroptosis by PPI was associated with the binding of PPI to Nrf2, HO-1, and GPX4 proteins, modulating the Nrf2/HO-1/GPX4 antioxidant axis. PPI also induced mitochondrial structural damage and decreased mitochondrial membrane potential (MMP). Inhibition of ferroptosis by ferrostatin-1 (Fer-1) mitigated the mitochondrial disruption induced by PPI. In vivo, PPI inhibited Nrf2/HO-1/GPX4 axis-induced ferroptosis, impeding HCC growth similar to the effects of sorafenib.
Conclusion: These results demonstrated that PPI intervention can suppress the proliferation, invasion, and metastasis of HCC cells by enhancing mitochondrial disruption and inducing ferroptosis via the Nrf2/HO-1/GPX4 axis. Consequently, our research advances the frontiers of pharmacodynamics and deepens our comprehension of the intricate mechanisms underpinning PPI. Furthermore, it has yielded an innovative treatment stratagem rooted in the tenets of Traditional Chinese Medicine (TCM), thereby furnishing a novel therapeutic avenue for addressing HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.155135 | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Technical University of Darmstadt, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Surg Laparosc Endosc Percutan Tech
January 2025
Department of Surgery, Division of Gastrointestinal Surgery, University of South Florida Morsani College of Medicine, Tampa, FL.
Background: Peroral endoscopic myotomy (POEM) is a well-established endoscopic treatment for achalasia, utilizing an endoscopic knife for dissection. Recently, new knives with an integrated water-jet (WJ) function have been introduced. This study aims to compare the technical, perioperative, and late postoperative outcomes between WJ knives and conventional (C) knives, which lack the WJ function, through a pairwise meta-analysis of published comparative studies.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
January 2025
The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
Purpose: Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression.
Methods: We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes.
J Diabetes Res
January 2025
Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Shenlian (SL) decoction, a renowned traditional Chinese formula for diabetes mellitus, has also been employed to treat intestinal disorders. Previous studies have demonstrated the efficacy of SL decoction in regulating blood glucose and intestinal bacteria. Nevertheless, further analysis is required to elucidate the mechanistic link between SL decoction-mediated improvement of intestinal function and treatment of Type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!