AI Article Synopsis

  • The study explored how xylo-oligosaccharide (XOS) helps chickens digest complex polysaccharides through their caecal bacteria, using a detailed protein analysis method.
  • The research involved feeding 800 Ross 308 broiler chicks two types of diets—one with XOS and one without—while measuring their growth and examining their caecal bacterial proteins after 35 days.
  • Results showed that XOS improved weight gain in the chicks at early stages, and proteomic analysis identified 29 differentially expressed proteins, particularly a group related to efficiently breaking down polysaccharides, highlighting the role of the Sus-like system in this process.

Article Abstract

The present study was conducted to investigate the stimbiotic mechanism of xylo-oligosaccharide (XOS) in degrading the complex polysaccharides by the caecal bacteria of the chicken, by applying a proteomic approach. A total of 800 as-hatched Ross 308 broiler chicks were equally divided into 4 experimental pens (200 chicks per pen) at a commercial poultry barn, allocating 2 pens per treatment. Birds were fed ad libitum with 2 dietary treatments; CON (without XOS) and XOS (with 0.1g XOS/kg diet) from d 0 to 35. From each pen, 60 Individual birds were weighed weekly whereas caecal content was obtained from 5 birds cervically dislocated on d 35. The caecal bacteria were lysed and their proteins were quantified using label-free quantitative proteomic mass spectrometry. The results showed that XOS significantly increased (P < 0.05) bird weight on d 7, 14, 21, and 28, and body weight gain on d 7, 14, 21, and 35 compared to CON. However, no difference (P > 0.05) in body weight gain was observed from d 0 to 35 between CON and XOS. The proteomic analysis of caecal bacteria revealed that 29 proteins were expressed differently between the CON and the XOS group. Out of 29, 20 proteins were significantly increased in the XOS group compared to CON and 9 of those proteins belonged to the starch-utilizing system (Sus)-like system of the gram-negative Bacteroidetes. Bacteroides thetaiotaomicron (Bt) is a significant constituent of the human gut microbiota, known for its remarkable ability to hydrolyze most glycosidic bonds of polysaccharides. This microorganism possesses a 5-protein complex in its outer membrane, named the starch utilization system (Sus), responsible for adhering to, breaking down, and transporting starch into the cell. Sus serves as an exemplar system for numerous polysaccharide utilization loci that target glycans found in Bt and other members of the Bacteroidetes phylum. The proteins of the Sus-like system are involved in the degradation of complex polysaccharides and transportation of the oligosaccharides into the periplasm of the caecal bacteria where they are further broken down into smaller units. These smaller units are then transported into the cytoplasm of the cell where they are utilized in metabolic pathways leading to potential generation of short-chain fatty acids, thus improving the nutritive value of residual feed. In conclusion, XOS supplementation upregulates the expression of the proteins of the Sus-like system indicating its role as a stimbiotic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590740PMC
http://dx.doi.org/10.1016/j.psj.2023.103113DOI Listing

Publication Analysis

Top Keywords

sus-like system
16
caecal bacteria
16
proteins sus-like
12
con xos
12
stimbiotic mechanism
8
xos
8
complex polysaccharides
8
body weight
8
weight gain
8
compared con
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!