[Ce(III)Cl], with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl]. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl] has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623567 | PMC |
http://dx.doi.org/10.1021/jacs.3c08166 | DOI Listing |
Brain Spine
December 2024
Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands.
Research Question: The goal of this study was to assess the diagnostic accuracy of spinal time-resolved contrast-enhanced MR angiography (4D-MRA) for the detection and localization of spinal dural arteriovenous fistulas (SDAVF) in our institution.
Material And Methods: Single center retrospective cohort study of patients with the clinical suspicion of a SDAVF. Patients were included who had undergone spinal 4D-MRA in the period January 2010-February 2021.
Nanotechnology
January 2025
Technische Universität München School of Computation Information and Technology, Hans-Piloty-Strasse 1, 85748 Garching bei Muenchen, Munich, 85748, GERMANY.
We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Gairradiation can be understood by assuming a few percent change in the effective magnetizationof the film due to a trade-off between changes in anisotropy and effective film thickness.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
CIFICEN (UNCPBA - CICPBA - CONICET), Tandil, Argentina.
Significance: In the last years, time-resolved near-infrared spectroscopy (TD-NIRS) has gained increasing interest as a tool for studying tissue spectroscopy with commercial devices. Although it provides much more information than its continuous wave counterpart, accurate models interpreting the measured raw data in real time are still lacking.
Aim: We introduce an analytical model that can be integrated and used in TD-NIRS data processing software and toolkits in real time.
Phys Med Biol
January 2025
Physics of Molecular Imaging Systems, RWTH Aachen University, Forckenbeckstraße 55, Aachen, NRW, 52074, GERMANY.
Integrating time-of-flight (ToF) measurements in radiography and computed tomography (CT) enables an approach for scatter rejection in imaging systems that eliminates the need for anti-scatter grids, potentially increasing system sensitivity and image quality. However, present hardware dedicated to the time-correlated measurement of X-rays is limited to a small scale and low density. A switch to highly integrated electronics and detectors is needed to progress towards a medium-scale system capable of acquiring images, while offering a timing resolution below 300 ps FWHM to achieve scatter rejection comparable to current grids.
View Article and Find Full Text PDFACS Omega
January 2025
Innovation Research Center for Fuel Cells and Hydrogen, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan.
There is a large gap between the performances indicated by rotating disk electrode (RDE) results in acidic media and the actual performances obtained in membrane-electrode assemblies (MEAs) composed of the same electrocatalysts. It is unclear whether the intrinsic kinetic reactivity of the available surface Pt sites of Pt-based cathode electrocatalysts is similar or different at RDE and in MEA. To address this, we used an operando element-selective time-resolved Pt L-edge quick X-ray absorption fine structure (QXAFS) technique to determine transient response profiles and rate constants, , , and , corresponding to changes in the oxidation states [white line (WL) intensity] and local structures (coordination numbers of Pt-O and Pt-Pt bonds) at Pt sites for nine representative Pt-based cathode electrocatalysts under transient voltage operations, aiming to understand the oxygen reduction reaction (ORR) performance gap between RDE and MEA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!