A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatiotemporal Variations of Soil Reactive Nitrogen Oxide Fluxes across the Anthropogenic Landscape. | LitMetric

Volatile reactive nitrogen oxides (NO) are significant atmospheric pollutants, including NO (nitric oxide [NO] + nitrogen dioxide [NO]) and NO (nitrous acid [HONO] + nitric acid [HNO] + nitrogen trioxide [NO] + ...). NO species are products of nitrogen (N) cycle processes, particularly nitrification and denitrification. Biogenic sources, including soil, account for over 50% of natural NO emissions to the atmosphere, yet emissions from soils are generally not included in atmospheric models as a result of a lack of mechanistic data. This work is a unique investigation of NO fluxes on a landscape scale, taking a comprehensive set of land-use types, human influence, and seasonality into account to determine large-scale heterogeneity to provide a basis for future modeling and hypothesis generation. By coupling 16S rRNA amplicon sequencing and quantitative polymerase chain reaction, we have linked significant differences in functional potential and activity of nitrifying and denitrifying soil microbes to NO emissions from soils. Further, we have identified soils subject to increased N deposition that are less microbially active despite increased available N, potentially as a result of poor soil health from anthropogenic pollution. Structural equation modeling suggests human influence on soils to be a more significant effector of soil NO emissions than land-use type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620987PMC
http://dx.doi.org/10.1021/acs.est.3c05849DOI Listing

Publication Analysis

Top Keywords

reactive nitrogen
8
emissions soils
8
human influence
8
soil
5
nitrogen
5
spatiotemporal variations
4
variations soil
4
soil reactive
4
nitrogen oxide
4
oxide fluxes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!