Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aggregation into groups may affect performance of individuals through the balance and strength of facilitative versus competitive interactions. We studied in situ how seasonal variation in abiotic environment affects this balance for blue mussels, a semi-sessile species. We hypothesize that seasonal variation in stresses and resources affects the strength of the interaction. We expected that, in benign conditions (here: high food availability, medium temperatures, low hydrodynamic stress), performance is dominated by growth and is better at low densities, while at adverse conditions (here: low food availability, low or high temperatures, high hydrodynamic stress), performance is dominated by survival and higher at high densities. Mussels were kept in shallow subtidal exclosures at 10 different densities for a one-month period. This exact procedure was repeated seven times at the same location within a one-year period. We measured development in mussel patch shape, performance, and environmental parameters. Environmental conditions for mussels were most benign in summer and most adverse in winter. Patches developed into less complex shapes at lower densities, but also after stronger hydrodynamic disturbances. Towards summer, mussels became more active, aggregation behavior increased, and interactions became more pronounced. Towards winter, mussels became less active: aggregation behavior and growth rates declined and at the lowest temperatures survival started to decrease with mussel density. Survival and growth (by proxy of mussel condition) were both density-dependent; however, contrary to our expectations we found positive interactions between density and survival at the most benign conditions in summer and negative interactions at the most adverse conditions in winter. In between the two seasons, the strength of the interactions increased towards summer and decreased towards winter following a bell-shaped pattern. This pattern might be explained by the environmental mediated aggregation behavior of the mussels. The obvious seasonal pattern in balance and strength of density-dependent interactions demonstrates that strength and direction of intra-specific interactions are both strongly affected by environmental context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586602 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293142 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!