A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Hounsfield units and vertebral bone quality score for the prediction of time to pathologic fracture in mobile spine metastases treated with radiotherapy. | LitMetric

AI Article Synopsis

  • * Researchers examined data from 100 patients treated for mobile spine metastases, finding that lower average HUs were linked to a higher risk of fractures, while VBQ did not show a significant correlation.
  • * The study concluded that using HUs could be a more reliable predictor for pathologic fractures post-radiotherapy compared to VBQ, with specific thresholds providing insight into fracture risk.

Article Abstract

Objective: Spine metastases are commonly treated with radiotherapy for local tumor control; pathologic fracture is a potential complication of spinal radiotherapy. Both Hounsfield units (HUs) on CT and vertebral bone quality (VBQ) on MRI have been argued to predict stability as measured by odds of pathologic fracture, although it is unclear if there is a difference in the predictive power between the two methodologies. The objective of the present study was to examine whether one methodology is a better predictor of pathologic fracture following radiotherapy for mobile spine metastases.

Methods: Patients who underwent radiotherapy (conventional external-beam radiation therapy, stereotactic body radiation therapy, or intensity-modulated radiation therapy) for mobile spine (C1-L5) metastases at a tertiary care center were retrospectively identified. Details regarding underlying pathology, patient demographics, and tumor morphology were collected. Vertebral involvement was assessed using the Weinstein-Boriani-Biagini (WBB) system. Bone quality of the non-tumor-involved bone was assessed on both pretreatment CT and MRI. Univariable analyses were conducted to identify independent predictors of fracture, and Kaplan-Meier analyses were used to identify significant predictors of time to pathologic fracture. Stepwise Cox regression analysis was used to determine independent predictors of time to fracture.

Results: One hundred patients were included (mean age 62.7 ± 11.9 years; 61% male), of whom 35 experienced postradiotherapy pathologic fractures. The most common histologies were lung (22%), prostate (21%), breast (14%), and renal cell (13%). On univariable analysis, the mean HUs of the vertebrae adjacent to the fractured vertebra were significantly lower among those experiencing fracture; VBQ was not significantly associated with fracture odds. Survival analysis showed that average HUs ≤ 132, nonprostate pathology, involvement of ≥ 3 vertebral body segments on the WBB system, Spine Instability Neoplastic Score (SINS) ≥ 7, and the presence of axial pain all predicted increased odds of fracture (all p < 0.001). Cox regression found that HUs ≤ 132 (OR 2.533, 95% CI 1.257-5.103; p = 0.009), ≥ 3 WBB vertebral body segments involved (OR 2.376, 95% CI 1.132-4.987; p = 0.022), and axial pain (OR 2.036, 95% CI 0.916-4.526; p = 0.081) predicted increased fracture odds, while prostate pathology predicted decreased odds (OR 0.076, 95% CI 0.009-0.613; p = 0.016). Sensitivity analysis suggested that an HU threshold of ≤ 132 and a SINS of ≥ 7 identified patients at increased risk of fracture.

Conclusions: The present results suggest that bone density surrogates as measured on CT, but not MRI, can be used to predict the risk of pathologic fracture following radiotherapy for mobile spine metastases. More extensive vertebral body involvement and the presence of mechanical axial pain additionally predict increased fracture odds.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2023.8.SPINE23420DOI Listing

Publication Analysis

Top Keywords

pathologic fracture
24
mobile spine
16
bone quality
12
fracture
12
spine metastases
12
radiation therapy
12
fracture odds
12
≤ 132
12
vertebral body
12
axial pain
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!