Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface.

J Chem Theory Comput

Collaborative Innovation Center of Chemistry for Energy Material (iChem), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.

Published: November 2023

The high dimensional machine learning potential (MLP) that has developed rapidly in the past decade represents a giant step forward in large-scale atomic simulation for complex systems. The long-range interaction and the poor description of chemical reactions are typical problems of high dimensional MLP, which are mainly caused by the poor structure discrimination of the atom-centered ML model. Herein, we propose a low-cost neural-network-based MLP architecture for fitting global potential energy surface data, namely, G-MBNN, that can offer improved energy and force resolution on a complex potential energy surface. In G-MBNN, a set of many-body energy terms based on the local atomic environment are explicitly included in computing the total energy─the total energy of the system is written as the sum of atomic energy and many-body energy contributions. These extra many-body energy terms are computationally low-cost and, importantly, can provide easy access to delicate energy terms in complex systems such as very short repulsion, long-range attractions, and sensitive angular-dependent covalent interactions. We implement G-MBNN in the LASP code and demonstrate the improved accuracy of the new framework in representative systems, including ternary-element energy materials LiCoO, TiO with defects, and a series of organic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00873DOI Listing

Publication Analysis

Top Keywords

potential energy
12
energy surface
12
many-body energy
12
energy terms
12
energy
11
complex potential
8
high dimensional
8
complex systems
8
potential
5
global neural
4

Similar Publications

Strategic model for integrating biogas a framework for sustainable energy integration in agro-industries.

Sci Rep

December 2024

Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.

View Article and Find Full Text PDF

Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.

View Article and Find Full Text PDF

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!