Ophthalmic biomarkers have long played a critical role in diagnosing and managing ocular diseases. Oculomics has emerged as a field that utilizes ocular imaging biomarkers to provide insights into systemic diseases. Advances in diagnostic and imaging technologies including electroretinography, optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy, fluorescence lifetime imaging ophthalmoscopy, and OCT angiography have revolutionized the ability to understand systemic diseases and even detect them earlier than clinical manifestations for earlier intervention. With the advent of increasingly large ophthalmic imaging datasets, machine learning models can be integrated into these ocular imaging biomarkers to provide further insights and prognostic predictions of neurodegenerative disease. In this manuscript, we review the use of ophthalmic imaging to provide insights into neurodegenerative diseases including Alzheimer Disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, and Huntington Disease. We discuss recent advances in ophthalmic technology including eye-tracking technology and integration of artificial intelligence techniques to further provide insights into these neurodegenerative diseases. Ultimately, oculomics opens the opportunity to detect and monitor systemic diseases at a higher acuity. Thus, earlier detection of systemic diseases may allow for timely intervention for improving the quality of life in patients with neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-023-03365-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!