Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the optical generation of ultrastable microwave signals for fountain clocks, we developed a setup based on a cavity stabilized laser and a commercial frequency comb. The robust system, in operation since 2020, is locked to a 100 MHz output frequency of a hydrogen maser and provides an ultrastable 9.6 GHz signal for the interrogation of atoms in two cesium fountain clocks, acting as primary frequency standards. Measurements reveal that the system provides a phase noise level that enables quantum projection noise limited fountain frequency instabilities at the low 10(/) level. At the same time, it offers largely maintenance-free operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.503631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!