PhylogeneticGraph (PhyG) a new phylogenetic graph search and optimization program.

Cladistics

Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA.

Published: February 2024

We present Phylogenetic Graph (PhyG), an open-source, phylogenetic search tool for diverse data types and graphs, including softwired and hardwired networks, in addition to trees. This allows for analysis of horizontal transfer and hybridization scenarios, as well as the necessary vertical inheritance of trees. PhyG is the successor to POY5 in performing combined data tree-alignment with enhancements in heuristic optimality (up to 7% in example data) and execution time (up to a factor of 200). Input data may exhibit a practically unlimited number of character states in qualitative or sequence (aligned and unaligned) types. Novel graph construction and refinement algorithms have been implemented and integrated into a variety of search procedures. Currently, PhyG implements parsimony and No-Common-Mechanism Likelihood optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cla.12560DOI Listing

Publication Analysis

Top Keywords

phylogenetic graph
8
phylogeneticgraph phyg
4
phyg phylogenetic
4
graph search
4
search optimization
4
optimization program
4
program phylogenetic
4
graph phyg
4
phyg open-source
4
open-source phylogenetic
4

Similar Publications

Can non-human primates extract the linear trend from a noisy scatterplot?

iScience

January 2025

Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.

Recent studies showed that humans, regardless of age, education, and culture, can extract the linear trend of a noisy scatterplot. Although this capacity looks sophisticated, it may simply reflect the extraction of the principal trend of the graph, as if the cloud of dots was processed as an oriented object. To test this idea, we trained Guinea baboons to associate arbitrary shapes with the increasing or decreasing trends of noiseless and noisy scatterplots, while varying the number of points, the noise level, and the regression slope.

View Article and Find Full Text PDF

Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.

Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.

View Article and Find Full Text PDF

Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species.

View Article and Find Full Text PDF

Background: Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far.

Results: We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.

View Article and Find Full Text PDF

A hypercubic Mk model framework for capturing reversibility in disease, cancer, and evolutionary accumulation modelling.

Bioinformatics

December 2024

Department of Biochemistry, School of Medicine, Universidad Autonoma de Madrid, Madrid 28029, Spain.

Motivation: Accumulation models, where a system progressively acquires binary features over time, are common in the study of cancer progression, evolutionary biology, and other fields. Many approaches have been developed to infer the accumulation pathways by which features (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!