Populations of enriched glial precursor cells and astrocytes isolated from primary cultures of newborn rat brain were used to study the synthesis of sulfated glycoproteins. Both cell types incorporated [3H]glucosamine and [35S]sulfate into carbohydrate side chains of proteoglycans and glycoproteins. The rate of incorporation of [3H]glucosamine into the oligosaccharides and the pattern of distribution of the label into high mannose and complex glycopeptides recovered from the glycoproteins appeared to be similar for the two glial cell types. However, clear differences were noted in the rate of oligosaccharide sulfation activities. Thus the cultures of precursor glia were about four times more active than cultures enriched in astroglia in their ability to incorporate [35S]sulfate into glycoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00965947DOI Listing

Publication Analysis

Top Keywords

synthesis sulfated
8
sulfated glycoproteins
8
glial precursor
8
precursor cells
8
cell types
8
glycoproteins
5
glycoproteins glial
4
cells populations
4
populations enriched
4
enriched glial
4

Similar Publications

High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.

View Article and Find Full Text PDF

κ-Carrageenan tetrasaccharide ameliorates particulate matter-induced defects in skin hydration of human keratinocytes cells and skin barrier disorders.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China. Electronic address:

Urban air pollutants, mainly represented by PM containing organic and inorganic substances, can penetrate the human skin and trigger oxidative stress, potentially causing skin barrier damage and aging. κ-Carrageenan oligosaccharides as degradation products of natural sulfated polysaccharide have a great potential for skin moisturization as well as improving oxidative stress and inflammation. In this study, κ-carrageenan tetrasaccharide was obtained by enzymatic digestion of κ-carrageenan, and its role in alleviating particulate matter-induced inflammatory response in HaCaT keratinocyte cell line and skin barrier dysfunction was evaluated.

View Article and Find Full Text PDF

Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.

View Article and Find Full Text PDF

Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!