The deviation from stoichiometry and the understanding of its consequences are key factors for the application of kesterites as solar cell absorbers. Therefore, this study investigates the local atomic structure of off-stoichiometric Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe) and Cu2ZnGeSe4 (CZGSe) by means of Extended X-ray Absorption Fine Structure Spectroscopy. Temperature dependent measurements yield the bond stretching force constants of all cation-anion bonds in stoichiometric CZTS and CZTSe and nearly stoichiometric CZGSe. Low temperature measurements allow high precision analysis of the influence of off-stoichiometry on the element specific average bond lengths and their variances. The overall comparison between the materials is in excellent agreement with measures like ionic/atomic radii and bond ionicities. Furthermore, the small uncertainties allow the identification of systematic trends in the Cu-Se and Zn-Se bond lengths of CZTSe and CZGSe. These trends are discussed in context of the types and concentrations of certain point defects, which gives insight into the possible local configurations and their influence on the average structural parameters. The findings complement the understanding of the effect of off-stoichiometry on the local structure of kesterites, which affects their electronic properties and thus their application for solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0169755 | DOI Listing |
J Phys Chem Lett
December 2024
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan.
[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Astrophysics Branch, NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States.
Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.
View Article and Find Full Text PDFRSC Adv
December 2024
Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University 170 An Duong Vuong Street Quy Nhon City 590000 Vietnam
Forty-eight stable structures of complexes formed between XCHZ and RCZOH (with X = H, F; R = H, F, Cl, Br, CH, NH; Z = O, S, Se, Te) were comprehensively investigated. It was found that the HZ-RZ complexes were more stable than the FZ-RZ ones, and their stability tendency decreased in the following order of Z: O > S > Se > Te. A predominant role of the electrostatic component was observed in XO-RO, while an outstanding contribution of the induction term was estimated in XS-RS, XSe-RSe, and XTe-RTe.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China. Electronic address:
The accumulation of intermediate products on the catalyst surface caused by insufficient oxygen activity is an important reason for the poor activity of catalysts towards oxygenated volatile organic compounds (OVOCs). CoMnO@MnO heterogeneous catalysts were fabricated to decipher the interfacial oxygen activation mechanism for efficient acetone oxidation. Experimental and theoretical explorations revealed that oxygen vacancies were easily formed at the interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!