Towards a sustainable chitosan-based composite scaffold derived from crab chitosan for bone tissue engineering.

J Biomater Sci Polym Ed

Faculty of Pharmacy, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55281, Indonesia.

Published: February 2024

Bone tissue engineering offers a novel therapy for repairing bone defects or fractures. However, it is becoming increasingly challenging because an ideal scaffold should possess a similar porous structure, high biocompatibility, and mechanical properties that match those of natural bone. To fabricate such a scaffold, biodegradable polymers are often preferred due to their degradability and tailored structure. This study involved the isolation of chitosan from crab shells () waste to use as a biomaterial in combination with hydroxyapatite (HAP) and collagen I (COL I) to mimic the extracellular matrix (ECM) composition of bone. After being cast and freeze-dried, it resulted in an interconnected porous scaffold with a porosity of 51.44% ± 2.28% and a pore diameter of 109.88 μm ± 49.84 μm. The swelling ratio of the crab scaffold was measured at 358.31% ± 25.23%, 363.04% ± 1.56%, and 370.11% ± 3.7% at 1, 3, and 6 h, respectively. Consequently, the scaffold exhibited a degradation ratio of 8.17% ± 2.59%, 21.62% ± 5.43%, 22.59% ± 14.23%, and 23.12% ± 6.28% over the course of 1 to 4 weeks. It demonstrated excellent biocompatibility with MG-63 osteosarcoma cells. Although the compression strength was lower than 2-12 MPa, the crab scaffold can still be applied effectively for non-load-bearing bone defects. Crab shell waste emerges as a promising source of chitosan for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2023.2271263DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
bone tissue
8
bone defects
8
crab scaffold
8
scaffold
7
bone
6
crab
5
sustainable chitosan-based
4
chitosan-based composite
4
composite scaffold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!