In this work, the crystal plane of strontium oxide (SrO) nanorods was integrated into hexagonal-boron nitride (h-BN) nanosheets to form 1D-2D (SrO/h-BN) composite were utilized for the electrochemical detection of the chemotherapeutic drug 5-fluorouracil (5-Fu). 5-Fu is a clinically proven and the third most frequently applied chemotherapeutic drug for treating solid tumours, such as colorectal, stomach, cutaneous and breast malignancies. Its overdoses lead to toxic metabolite accumulation that has serious adverse consequences on humans, including neurotoxicity, death and the induction of morbidity. Therefore, to improve the chemotherapy and predict the potential adverse effects of 5-Fu residues in the human body, susceptible and quick analytical methods for detecting 5-Fu in human body fluids (blood serum/plasma and urine) are needed. The effective interaction of the synthesized SrO/h-BN composite shows increased efficiency for the electrochemical detection of 5-Fu with good selectivity. Notably, a simple sonochemical method achieved a synergistic interaction between the (100) plane of SrO and the (002) plane of h-BN. Various analytical and spectroscopic techniques were used to characterize the SrO/h-BN nanocomposite, which provided useful insights into the composition and properties of the composite material. The crystalline, structural and chemical characteristics of the as-synthesized material were characterized by XRD, Raman spectroscopy, HR-TEM, XPS and HR-SEM. Furthermore, the proposed electrode's electrochemical sensing capability was analysed using CV, EIS, DPV and - curve methods. Numerous active sites created on a modified electrode enhanced the mass transport and electron transfer rate, thereby increasing the electrochemical activity towards the 5-Fu detection. Consequently, under optimized conditions, the SrO/h-BN/GCE exhibited remarkable selectivity, durability, low detection limit (0.003 μM) and wide linear range (0.02-56 μM) for 5-Fu. Finally, the successful application of this sensor for 5-Fu detection in biological samples was successfully tested with high recovery percentages.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01493bDOI Listing

Publication Analysis

Top Keywords

electrochemical sensing
8
sro/h-bn composite
8
electrochemical detection
8
chemotherapeutic drug
8
5-fu
8
human body
8
5-fu detection
8
electrochemical
5
detection
5
crystal plane-integrated
4

Similar Publications

Controlled synthesis of faceted nanoparticles on surfaces without explicit use of ligands has gained attention due to their promising applications in electrocatalysis and chemical sensing. Electrodeposition is a desirable method; however, precise control over their size, spatial distribution, and morphology requires extensive optimization. Here, we report the spatially resolved synthesis of shape-controlled Pt nanoparticles and fast screening of synthesis conditions in scanning electrochemical cell microscopy (SECCM) with pulse potentials.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

Sensitive H sensors play key roles in the large-scale and safe applications of H. In this study, we developed novel ternary Pd-loaded SnO@WO core-shell structures by hydrothermal and reduction methods. The compositions of the optimized ternary core-shell structures (Pd-SW-2) are prepared on the basis of the optimal binary core-shell structures (SW-X) according to the sensing performances to H.

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!