Introduction: Breast cancer remains a significant global health challenge, accounting for 2.3 million new cases in 2020 and ranking as the most prevalent cancer by incidence and the fourth in cancer-related mortality worldwide. In China, breast cancer also rapidly increases incidence and burden. The research of exosomes in breast cancer has attracted more and more attention and has a rapid development. Recognizing the pivotal role of exosomes in breast cancer research, we have undertaken a comprehensive scientometric analysis of pertinent scholarly articles published over the past decade to elucidate the current research landscape for researchers.

Methods: In this study, we gathered all pertinent publications from the Web of Science. Biblioshiny (a web interface for Bibliometrix), VOSviewer software, and CiteSpace software were used to analyze the information on publications, including global trends, countries, institutions, journals, authors, keywords, and citations.

Results: A total of 1,239 articles and 625 review articles were retrieved. The annual global publication output has an increased trend in recent decades overall. China contributed the most articles. The publications of the USA had the most total link strength. Nanjing Medical University had the most total link strength. The most relevant source was the . Tang JH contributed the most articles and had the highest H-index, G-index, and total link strength. The most cited document was "Tumor exosome integrins determine organotropic metastasis", with 2730 citations. The basic themes included "exosomes", "expression", "cells", "identification", "biomarkers", and "serum". The keyword "membrane vesicle" had the strongest bursts. The keywords "target", "biology", "suppressor cell", "molecular mechanism", "tumor progression", "inhibitor", and "model" appeared as prominent focal points in current research and active areas of exploration.

Conclusion: Over the past decade, exosome research in breast cancer has undergone a discernible evolution, shifting from broader investigations of exosome roles to focused exploration of specific pathways relevant to breast cancer. Notably, the emphasis has extended to the clinical application of exosomes as biomarkers and potential therapeutic agents in breast cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579892PMC
http://dx.doi.org/10.3389/fonc.2023.1273555DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
total link
12
link strength
12
cancer
9
breast
8
scientometric analysis
8
exosomes breast
8
contributed articles
8
articles
5
trends exosomes
4

Similar Publications

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Analysis of circulating cell-free nuclear and mitochondrial DNA in plasma of Mexican patients with breast cancer.

Gac Med Mex

January 2025

División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara.

Background: The usefulness of circulating free DNA (cfDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) as potential biomarkers in cancer remains controversial.

Objective: To determine the concentration of cfDNA and plasma nDNA and mtDNA levels in breast cancer (BC) patients.

Material And Methods: This study included a total of 86 women (69 patients with BC and 17 women as a control group).

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Background: CT thorax, abdomen and pelvis (CT-TAP) remains the standard in the identification of metastatic disease in patients with newly diagnosed breast cancer. In patients with proven micro and macro axillary nodal metastasis, the optimal radiological technique remains controversial. A consensus on which patients with axillary nodal disease should receive radiological staging for distant disease and how this should be performed is not currently available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!