Introduction: The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection.

Methods: Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi.

Results: We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy.

Discussion: These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580809PMC
http://dx.doi.org/10.3389/fimmu.2023.1270414DOI Listing

Publication Analysis

Top Keywords

fibrotic remodeling
16
inflammation fibrosis
12
phosphodiesterase-4 inhibitor
8
lung inflammation
8
fibrosis hamster
8
hamster model
8
model sars-cov-2
8
sars-cov-2 infection
8
acute respiratory
8
fibrosis covid-19
8

Similar Publications

Non-Hypertensive Effects of Aldosterone.

Int J Mol Sci

January 2025

Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland.

Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells.

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.

View Article and Find Full Text PDF

The impact of high heterogeneity of cancer-associated fibroblasts (CAFs) on triple-negative breast cancer (TNBC) immunotherapy response has not been fully elucidated, restricting progress in precision immuno-oncology. We integrated single-cell transcriptomic data from 18 TNBC patients and analyzed fibroblast subpopulations. Extracellular matrix CAFs (ecmCAFs) were identified as a fibroblast subpopulation with distinct ECM-associated characteristics.

View Article and Find Full Text PDF

Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!