Background: Biosynthesis of von Willebrand factor (VWF) in endothelial cells drives the formation of storage-organelles known as Weibel-Palade bodies (WPBs). WPBs also contain several other proteins, including angiopoietin-2 (Ang-2).
Objectives: At present, the molecular basis of the VWF-Ang-2 interaction is poorly understood. Here, we used immunosorbent-binding assays and specific recombinant VWF fragments to analyze VWF-Ang-2 interactions.
Results: We found that VWF bound to immobilized Ang-2 most efficiently (half-maximal binding at 0.5 ± 0.1 μg/mL) under conditions of high CaCl (10 mM) and slightly acidic pH (6.4-7.0). Interestingly, several isolated recombinant VWF domains (A1/Fc, A2/Fc, D4/Fc, and D'D3-HPC4) displayed dose-dependent binding to immobilized Ang-2. Binding appeared specific, as antibodies against D'D3, A1, and A2 significantly reduced the binding of these domains to Ang-2. Complexes between VWF and Ang-2 in plasma could be detected by immunoprecipitation- and immunosorbent assays. Unexpectedly, control experiments also revealed complexes between VWF and angiopoietin-1 (Ang-1), a protein structurally homologous to Ang-2. Furthermore, direct binding studies showed dose-dependent binding of VWF to immobilized Ang-1 (half-maximal binding at 1.8 ± 1.0 μg/mL). Interestingly, rather than competing for Ang-1 binding, Ang-2 enhanced the binding of VWF to Ang-1 about 3-fold. Competition experiments further revealed that binding to VWF does not prevent Ang-1 and Ang-2 from binding to Tie-2.
Conclusion: Our data show that both Ang-1 and Ang-2 bind to VWF, seemingly using different interactive sites. Ang-2 modulates the binding of VWF to Ang-1, the (patho)-physiological consequences of which remain to be investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579536 | PMC |
http://dx.doi.org/10.1016/j.rpth.2023.102204 | DOI Listing |
Haematologica
January 2025
Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn.
Von Willebrand factor (VWF) plays a critical role in hemostasis, and emerging evidence suggests its involvement in inflammation. Our study aimed to investigate the interaction between circulating plasma VWF and neutrophils (polymorphonuclear cells, PMNs), elucidate the fate of VWF after binding, and explore its impact on neutrophil behavior. Neutrophils were isolated from the whole blood of healthy volunteers, and their interaction with plasma VWF was examined ex vivo.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Background: Genetically determined amino acid substitutions in the platelet adhesive A1 domain alter von Willebrand factor's platelet agglutination competence resulting in both gain- (Type 2B) and loss-of-function (Type 2M) phenotypes of Von Willebrand disease. Prior studies of variants in both phenotypes revealed defects in secondary structure that altered stability and folding of the domain. An intriguing observation was that loss of function arose from both misfolding of A1 and, in a few cases, hyper-stabilization of the native structure.
View Article and Find Full Text PDFSci Rep
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.
View Article and Find Full Text PDFFront Immunol
December 2024
Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
Introduction: Unfolded Von Willebrand Factor (VWF) is increased in thrombotic pathologies such as myocardial infarction. Unfolded VWF mediates the binding of platelets without the need for collagen. β-glycoprotein I (β-GPI) is a natural inhibitor of the platelet-VWF interaction.
View Article and Find Full Text PDFNAR Mol Med
October 2024
Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA.
The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!