Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: To explore the hotspots and frontiers of genetic research on pediatric cataracts.
Methods: Global publications from 2013 to 2022 related to genes in pediatric cataracts were extracted from the Web of Science Core Collection, and were analyzed in terms of the publication counts, countries, journals, authors, keywords, cited references, subject categories, and the underlying hotspots and frontiers.
Results: Totally 699 publications were included in the final analysis. The predominant actors were identified, with China (=240) and (=33) being the most productive country and journal respectively. The research hotspots extracted from keywords were crystallin gene mutations, pathogenicity evaluation, phenotypes of ocular and neurodevelopmental abnormalities, genes encoding membrane proteins, and diagnosis of multisystemic disorders. The co-cited articles formed 10 clusters of research topics, including (56 items), mutation screening (43 items), gap junction (29 items), the Warburg Micro syndrome (29 items), ephrin-A5 (28 items), novel mutation (24 items), eye development and function (22 items), cholestanol (7 items), (6 items), and pathogenicity prediction (3 items). The research frontiers were , ephrin-A5, and cholestanol. Cell biology showed the strongest bridging effects among different disciplines in the field (betweenness centrality=0.44).
Conclusion: With the progress in next-generation sequencing and multidisciplinary collaboration, genetic research on pediatric cataracts broadens the knowledge scope of the crystalline lens, as well as other organs and systems, shedding light on the molecular mechanisms of systemic diseases. Cell biology may integrate multidisciplinary content to address cutting-edge issues in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559021 | PMC |
http://dx.doi.org/10.18240/ijo.2023.10.19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!