The achievement of biocompatible platforms for multimodal therapies is one of the major challenges in the burgeoning field of nanomedicine. Here, we report on a mixed β- and γ-cyclodextrin-based branched polymeric material () covalently integrating a nitric oxide (NO) photodonor (NOPD) within its macromolecular scaffold, and its supramolecular ensemble with a singlet oxygen (O) photosensitizer (PS) Zn(II) phthalocyanine () and the chemodrug Lenvatinib (). This polymer is highly water-soluble and generates NO under visible blue light stimuli with an efficiency of more than 1 order of magnitude higher than that of the single NOPD. The PS, which in an aqueous solution is aggregated and non-photoresponsive, can be entangled in the polymeric network as a photoresponsive monomeric species. In addition, the poorly water-soluble can be co-encapsulated within the polymeric host, which increases the drug solubility by more than 30-fold compared to the free drug and more than 2-fold compared with a similar branched polymer containing only βCD units. The supramolecular nanoensemble, 15 nm in diameter, retains well the photochemical properties of both the NOPD and PS, which can operate in parallel under light stimuli of different energies. Irradiation with blue and red light results in the photogeneration of NO and O associated with red fluorescence emission, without inducing any photodegradation of . This result is not trivial and is due to the absence of significant, mutual interactions between the NOPD, the PS and both in the ground and excited states, despite these components are confined in the same host. The proposed polymeric nanoplatform may represent a potential trimodal nanomedicine for biomedical research studies, since it combines the double photodynamic action of NO and O, two species that do not suffer multidrug resistance, with the therapeutic activity of a conventional chemodrug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580695PMC
http://dx.doi.org/10.1021/acsapm.3c01157DOI Listing

Publication Analysis

Top Keywords

branched polymer
8
light stimuli
8
mixed β-γ-cyclodextrin
4
β-γ-cyclodextrin branched
4
polymer multiple
4
multiple photo-chemotherapeutic
4
photo-chemotherapeutic cargos
4
cargos achievement
4
achievement biocompatible
4
biocompatible platforms
4

Similar Publications

Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.

View Article and Find Full Text PDF

Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.

View Article and Find Full Text PDF

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

The Impact of an MDP-Containing Primer on the Properties of Zinc Oxide Networks Infiltrated with BisGMA-TEGDMA and UDMA-TEGDMA Polymers.

Materials (Basel)

December 2024

Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105 Kiel, Germany.

This study was conducted to evaluate the material properties of polymer-infiltrated zinc oxide networks (PICN) and the effect of using a phosphate monomer-containing primer applied before polymer infiltration. A total of 148 ZnO-network (zinc oxide) specimens were produced: = 74 were treated with a primer before polymer infiltration and light curing, while the remaining specimens were untreated. Each group was divided into two subgroups ( = 37) based on the infiltrating polymer: UDMA (aliphatic urethane-dimethacrylates)-TEGDMA (triethylene glycol-dimethacrylate) or BisGMA (bisphenol A-glycidyl-methacrylate)-TEGDMA.

View Article and Find Full Text PDF

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!