Poly-(-butyl methacrylate) (PnBMA) is an important polymer in biomedical applications. Here we study the stability of PnBMA thin films prepared on top of slippery silicon substrates and exposed to nonsolvent aqueous incubation media like water and phosphate-buffered saline (PBS) at temperatures relevant to biological applications (37 °C, 25 °C and 4 °C). Dewetting hole growth experiments allowed us to probe the instability in PnBMA films upon incubation followed by thermal annealing. From the early stage of dewetting hole growth dynamics, we inferred that the stability of the thin PnBMA films decreases as a function of the duration and temperature of incubation, even though the films were found not to readily dewet at room temperature after incubation. It is also observed that water incubation makes films more unstable than incubation in PBS. We explained our observations as a combined effect of (i) an increase in surface energy of the PnBMA film due to incubation, (ii) an increased destabilizing effect due to the dominant polar interactions between the incubation medium and the PnBMA film and (iii) the plasticization effect of PnBMA films by the incubation media. Plasticization resulted in a decrease in the modulus of PnBMA thin films as a function of incubation time. The viscosity of PnBMA films upon incubation was found to be coupled to the decreasing modulus. Thus we infer that incubation in common aqueous nonsolvents can detrimentally affect the stability of polymers limiting their specific usages through a complex interplay of multiple molecular level phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00812f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!