MXenes have garnered research attention in the field of biomedical applications due to their unique properties, such as a large surface area, low toxicity, biocompatibility, and stability. Their optical behavior makes them versatile for a wide range of biomedical applications, from diagnostics to therapeutics. Nonetheless, MXenes have some minor limitations, including issues with restacking, susceptibility to oxidation, and a non-semiconducting nature. These limitations have prompted researchers to explore the incorporation of metal oxides into MXene structures. Metal oxides possess advantageous properties such as a high surface area, biocompatibility, intriguing redox behavior, catalytic activity, semiconducting properties, and enhanced stability. Incorporating metal oxides into MXenes can significantly improve their conductivity, surface area, and mechanical strength. In this review, we emphasize the importance of incorporating metal oxides into MXenes for light-influenced biomedical applications. We also provide insights into various preparation methods for incorporating metal oxides into MXene structures. Furthermore, we discuss how the incorporation of metal oxides enhances the optical behavior of MXenes. Finally, we offer a glimpse into the future potential of metal oxide-incorporated MXenes for diverse biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr02527fDOI Listing

Publication Analysis

Top Keywords

metal oxides
24
biomedical applications
16
surface area
12
incorporating metal
12
metal
8
optical behavior
8
incorporation metal
8
oxides mxene
8
mxene structures
8
oxides mxenes
8

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

A novel series of D-A-D-type 9-phenyl-9-phosphafluorene oxide (PhFlOP) derivatives was prepared and is reported herein. The synthetic protocol involved 5 steps from commercially available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final CsCO-facilitated nucleophilic substitution (77-91% yield). The characterization data obtained from IR and NMR spectroscopy (H, C, F, and P) as well as HRMS spectrometry were in full agreement with the expected structures, and single-crystal X-ray diffraction analysis was conducted to confirm the structure of compound .

View Article and Find Full Text PDF

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Low-temperature oxidation of ethanol to acetaldehyde over Mo-based catalysts.

RSC Adv

January 2025

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China

The research and development of the green synthesis route of chemicals has become the focus of research in academia and industry. At present, the highly efficient oxidation of ethanol to acetaldehyde over non-precious metal catalysts under mild conditions is most promising, but remains a big challenge. Herein, the Mo-Sn oxide catalyst was designed to successfully realize low-temperature oxidation of ethanol to acetaldehyde, achieving an acetaldehyde selectivity of 89.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!