In recent years, the synthesis of metal-organic framework (MOF)─nanocomposites has received wide attention from the scientific fraternity due to the presence of a tunable hierarchical architecture and invasive versatility in applications. The present work focuses on the solvothermal synthesis of a novel hybrid MOF-nanocomposite through the impregnation of Mn-doped ZnO nanoparticles onto the matrix of a pioneer metal-organic framework that is composed of zinc metal connected with terephthalic acid linkers (MOF-5). The hierarchical arrangements of the prepared material were further assessed by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), UV-visible, photoluminescence (PL), and dynamic light scattering (DLS) measurements. The porosity analysis via nitrogen sorption measurements at 77 K showed that the material is porous with hierarchical micro-, wide micro-, and mesopores. The SAED pattern confirms the polycrystallinity of the material, which is in good agreement with the data obtained from PXRD analysis. Effective integration of Mn-doped ZnO onto the MOF structure was confirmed by XPS analysis, and the study further identified the oxidation state of the elements present. The synthesized analyte is an efficient fluorescent chemosensor for the detection of acetic acid, which can find further potential applications in intracellular imaging. Interestingly, the same compound also selectively detects the presence of Cr(VI) ions, thereby acting as a dual sensor, which finds applications in the sensing and removal of environmental contaminants. The material showed a sharp and intense emission at 569 nm at an excitation wavelength of 320 nm, and it exhibits high quenching efficiencies of 99.87 and 71.43% toward the sensing of μM level concentration of acetic acid and CrO, respectively. The highly efficient fluorescent sensing of pollutants, even at a shorter linear range, discarded the possibility of sensing the pollutants at higher concentration ranges. The value for the detection of acetic acid and Cr(VI) is found to be 3.7017 × 10 and 11.0324 × 10 M, respectively, which further confirms the higher sensing ability of the synthesized fluorophore. The mechanistic studies and density functional theory calculations of Mn-doped ZnO@MOF-5 reveal that photoinduced electron transfer plays a significant role in the turn-off response toward acetic acid and CrO ions. In the case of acetic acid, in addition to photoinduced electron transfer, hydrogen bonding interactions may also lead to fluorescence quenching. To the best of our knowledge, no precedent work has been reported for the sensing of acetic acid in the solution state. All other fluorescent sensing reports put forward the sensing and adsorption of acetic acid in the gaseous state, which makes this material a pioneer among others for the detection of acetic acid in the solution phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02507DOI Listing

Publication Analysis

Top Keywords

acetic acid
36
detection acetic
16
photoinduced electron
12
electron transfer
12
acid
10
acetic
9
metal-organic framework
8
mn-doped zno
8
efficient fluorescent
8
sensing
8

Similar Publications

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

In some mutualisms involving host plants, photoassimilates are provided as rewards to symbionts. Endophagous organisms often manipulate host plants to increase access to photoassimilates. Host manipulations by endophagous organisms that are also mutualists are poorly understood.

View Article and Find Full Text PDF

Purpose: Tuberose ( [Medik.]) is a vegetatively propagated commercial flower crop with limited genetic variability. Crossing barriers prevailing in tuberose necessitates modern breeding techniques like in vitro mutagenesis to generate variability.

View Article and Find Full Text PDF

Chromatin Regulation of Acetic Acid Stress Tolerance by Ino80 in Budding Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Enhanced environmental stress tolerance is important for microbial production of biofuels and biobased chemicals. However, the roles of chromatin regulation in stress tolerance and bioproduction remain unclear. Here, we explore the effects of Ino80, the core subunit of the INO80 chromatin remodeling complex, on yeast stress adaptation.

View Article and Find Full Text PDF

Conformational versatility among crystalline solids of L-phenylalanine derivatives.

Acta Crystallogr C Struct Chem

February 2025

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.

In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!