A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanopore Electroporation Device for DNA Transfection into Various Spreading and Nonadherent Cell Types. | LitMetric

Nanopore Electroporation Device for DNA Transfection into Various Spreading and Nonadherent Cell Types.

ACS Appl Mater Interfaces

Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China.

Published: November 2023

Cell transfection plays a crucial role in the study of gene function and regulation of gene expression. The existing gene transfection methods, such as chemical carriers, viruses, electroporation, and microinjection, suffer from limitations, including cell type dependence, reliance on cellular endocytosis, low efficiency, safety concerns, and technical complexity. Nanopore-coupled electroporation offers a promising approach to localizing electric fields for efficient cell membrane perforation and nucleic acid transfection. However, the applicability of nanopore electroporation technology across different cell types lacks a systematic investigation. In this study, we explore the potential of nanopore electroporation for transfecting DNA plasmids into various cell types. Our nanopore electroporation device employs track-etched membranes as the core component. We find that nanopore electroporation efficiently transfects adherent cells, including well-spreading epithelial-like HeLa cells, cardiomyocyte-like HL-1 cells, and dendritic-cell-like DC2.4 cells. However, it shows a limited transfection efficiency in weakly spreading macrophages (RAW264.7) and suspension cells (Jurkat). To gain insights into these observations, we develop a COMSOL model, revealing that nanopore electroporation better localizes the electric field on adherent and well-spreading cells, promoting favorable membrane poration conditions. Our findings provide valuable references for advancing nanopore electroporation as a high-throughput, safe, and efficient gene transfection platform.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10939DOI Listing

Publication Analysis

Top Keywords

nanopore electroporation
28
cell types
12
electroporation device
8
gene transfection
8
electroporation
8
nanopore
7
transfection
6
cell
6
cells
6
device dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!