Background: Ferroptosis is closely associated with the pathophysiological processes of many diseases, such as infection, and is characterized by the accumulation of excess lipid peroxides on the cell membranes. However, studies on the ferroptosis-related diagnostic markers in tuberculosis (TB) is still lacking. Our study aimed to explore the role of ferroptosis-related biomarkers and molecular subtypes in TB.
Methods: GSE83456 dataset was applied to identify ferroptosis-related genes (FRGs) associated with TB, and GSE42826, GSE28623, and GSE34608 datasets for external validation of core biomarkers. Core FRGs were identified using weighted gene co-expression network analysis (WGCNA). Subsequently, two ferroptosis-related subtypes were constructed based on ferroptosis score, and differently expressed analysis, GSEA, GSEA, immune cell infiltration analysis between the two subtypes were performed.Affiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.correctly RESULTS: A total of 22 FRGs were identified, of which three genes (CHMP5, SAT1, ZFP36) were identified as diagnostic biomarkers that were enriched in pathways related to immune-inflammatory response. In addition, TB patients were divided into high- and low-ferroptosis subtypes (HF and LF) based on ferroptosis score. HF patients had activated immune- and inflammation-related pathways and higher immune cell infiltration levels than LF patients.
Conclusion: Three potential diagnostic biomarkers and two ferroptosis-related subtypes were identified in TB patients, which would help to understand the pathogenesis of TB.Author names: Kindly check and confirm the process of the author names [2,4]correctly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585777 | PMC |
http://dx.doi.org/10.1186/s40001-023-01371-5 | DOI Listing |
Anal Methods
January 2025
Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.
View Article and Find Full Text PDFChem Rec
January 2025
Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.
Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.
Extracell Vesicles Circ Nucl Acids
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China.
Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!