The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585835PMC
http://dx.doi.org/10.1186/s13567-023-01219-0DOI Listing

Publication Analysis

Top Keywords

avian influenza
32
mechanistic models
16
influenza transmission
16
control strategies
16
influenza viruses
12
systematic review
8
review mechanistic
8
avian
8
influenza
8
transmission control
8

Similar Publications

Recent Advances of Avian Viruses Research.

Viruses

January 2025

Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan.

The outbreaks of several epidemics caused by pathogenic avian viruses pose significant threats to the poultry industry [...

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) epizootics have caused repeated mass mortality events among wild birds. The effect of the infection is potentially detrimental for a variety of bird species, including the Peregrine Falcon (). The numbers of wintering and breeding Peregrine Falcons in the Netherlands have recently declined.

View Article and Find Full Text PDF

Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus.

Int J Mol Sci

January 2025

Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!