Recent studies have shown that the high incidence and low cure rate of hepatocellular carcinoma (HCC) have not improved significantly. Surgery and liver transplantation are the mainstays of prolonging the survival of HCC patients. However, the surgical resection rate of HCC patients is very low, and even after radical surgical resection, the recurrence rate at 5 years postoperatively remains high and the prognosis is very poor, so more treatment options are urgently needed. Increasing evidence suggests that cellular senescence is not only related to cancer development but may also be one of its primary driving factors. We aimed to establish a prognostic signature of senescence-associated genes to predict the prognosis and therapeutic response of HCC patients. The aim of this study was to develop a risk model associated with cellular senescence and to search for potential strategies to treat HCC. We divided HCC patients into two clusters and identified differentially expressed genes (DEGs) between clusters. In this study, low-risk patients had a better prognosis, higher levels of immune cell infiltration, and better efficacy to fluorouracil, Paclitaxel and Cytarabine chemotherapy compared to high-risk patients. To further identify potential biomarkers for HCC, we further validated the expression levels of the four signature genes in HCC and neighbouring normal tissues by in vitro experiments. In conclusion, we identified and constructed a relevant prognostic signature, which performed well in predicting the survival and treatment response of HCC patients. This helps to differentiate between low-score and high-risk HCC, and the results may contribute to precise treatment protocols in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585749 | PMC |
http://dx.doi.org/10.1186/s12885-023-11288-1 | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.
Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.
Cell Div
January 2025
Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.
Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).
Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.
Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
University of Calgary, Calgary, Canada.
Objectives: Contrast enhanced ultrasound (CEUS) now joins the ranks of CT and MRI for noninvasive diagnosis of hepatocellular carcinoma (HCC). CEUS LI-RADS provides greater than 95% specificity for diagnosis within LR-5. Unlike CT/MRI, CEUS is nodule based.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!