Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584866 | PMC |
http://dx.doi.org/10.1038/s41598-023-44783-3 | DOI Listing |
Food Chem
December 2024
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China. Electronic address:
Cheese-associated microbiota and their interactions are crucial in determining the properties of cheese. This study aimed to compare the effects of different starter cultures on Cheddar cheese production using texture analysis, electronic sensory evaluation, and both volatile and non-volatile metabolomics. Specifically, we examined Lactococcus lactis BL19 and Lactococcus cremoris LC99, both individually and in combination.
View Article and Find Full Text PDFMetabolites
December 2024
Cryptobiotix SA, 9052 Ghent, Belgium.
Background: Using dietary interventions to steer the metabolic output of the gut microbiota towards specific health-promoting metabolites is often challenging due to interpersonal variation in treatment responses.
Methods: In this study, we combined the ex vivo SIFR (Systemic Intestinal Fermentation Research) technology with untargeted metabolite profiling to investigate the impact of carrot-derived rhamnogalacturonan-I (cRG-I) on ex vivo metabolite production by the gut microbiota of 24 human adults.
Results: The findings reveal that at a dose equivalent to 1.
Metabolites
December 2024
School of Food Science and Engineering, Foshan University, Foshan 528231, China.
Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center Northwest Minzu University Lanzhou China.
Different percentages of jujube yrup (0%, 3%, 6% and 9%) were incorporated into yak milk and fermented using the fermenting agent . The quality characteristics and antioxidant activity of the resulting yogurt were evaluated at days 0, 7, 14, 21 and 28. The results indicated that the pH and acidity of the yogurt were not significantly influenced by the varying additions of jujube syrup during storage ( > 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!