Joint resistance to passive mobilization has already been estimated in-vivo in several studies by measuring the applied forces and moments while manipulating the joint. Nevertheless, in most of the studies, simplified modelling approaches are used to calculate this joint resistance. The impact of these simplifications is still unknown. We propose a protocol that enables a reference 3D inverse dynamics approach to be implemented and compared to common simplified approaches. Eight typically developed children and eight children with cerebral palsy were recruited and underwent a passive testing protocol, while applied forces and moments were measured through a 3D handheld dynamometer, simultaneously to its 3D kinematics and the 3D kinematics of the different segments. Then, passive joint resistance was estimated using the reference 3D inverse dynamics approach and according to 5 simplified approaches found in the literature, i.e. ignoring either the dynamometer kinematics, the measured moments alone or together with the measured tangential forces, the gravity and the inertia of the different segments, or the distal segments kinematics. These simplifications lead to non-negligible differences with respect to the reference 3D inverse dynamics, from 3 to 32% for the ankle, 4 to 34% for the knee and 1 to 58% for the hip depending of the different simplifications. Finally, we recommend a complete 3D kinematics and dynamics modelling to estimate the joint resistance to passive mobilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584879 | PMC |
http://dx.doi.org/10.1038/s41598-023-44576-8 | DOI Listing |
Plant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University Providence, RI 02903, USA.
Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
serovar Mbandaka, a prevalent foodborne pathogen, poses a threat to public health but remains poorly understood. We have determined the phylogenomic tree, genetic diversity, virulence, and antimicrobial resistance (AMR) profiles on a large genomic scale to elucidate the evolutionary dynamics within the Mbandaka pan-genome. The polyphyletic nature of this serovar is characterized by two distinct phylogenetic groups and inter-serovar recombination boundaries, that potentially arising from recombination events at the H2-antigen loci.
View Article and Find Full Text PDFJ Clin Transl Hepatol
January 2025
Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!