Early-life environmental exposures play a significant role in shaping long-lasting immune phenotypes and disease susceptibility. Nevertheless, comprehensive understanding of the developmental programming of immunity is limited. We propose that the vertebrate immune system contains durable programmable components established through early environmental interactions and maintained in a stable and homeostatic manner. Some immune components, such as immunological memory, are intrinsically programmable. Others are influenced by conditions during critical developmental windows in early life, including microbiota, hormones, metabolites, and environmental stress, which impact programming. Developmental immune programming can promote adaptation to an anticipated future environment. However, mismatches between predicted and actual environments can result in disease. This is relevant because understanding programming mechanisms can offer insights into the origin of inflammatory diseases, ideally enabling effective prevention and treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.it.2023.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!