Engineering robust non-noble metal electrocatalysts towards efficient impure water (e.g., seawater, wastewater) oxidation is a prospective approach to achieve carbon neutrality via accelerating green hydrogen energy development. Herein, a NiCo layered double hydroxides (LDH)/NiFe LDH composite (NiCo-LDH/NiFe-LDH) was developed for oxygen evolution reaction (OER) via a hydrothermal process-electrodeposition method. The optimal NiCo-LDH/NiFe-LDH-30 composite only needed an overpotential (η) of 240 mV to drive 100 mA/cm in alkalized freshwater, with a low Tafel slope of 16.6 mV/dec and good stability for over 90 h. Further analyses suggested that the strong interface interaction between NiCo-LDH and NiFe-LDH accelerated the oxygen gas bubble evolution and boosted interfacial charge transfer, and the formed built-in electric field and higher oxidation state species (metal oxyhydroxides) contributed to the high intrinsic catalytic activity. The NiCo-LDH/NiFe-LDH-30 composite also held excellent OER activities in different impure water environments, including alkaline 0.5 M NaCl solution (η = 333 mV), alkaline lake water (η = 345 mV), and alkaline wastewater treatment plant (WWTP) effluent (η = 320 mV). More importantly, the potential effects of Cl and CO in impure water were revealed during the OER process. This work elaborates on the role of built-in electric field and the strong coupling interaction in composite catalysts, which pave the way for the design of cost-effective catalysts with excellent adaptability in different water environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!