The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841713 | PMC |
http://dx.doi.org/10.1016/j.molcel.2023.09.032 | DOI Listing |
Oncotarget
January 2025
Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil.
Approximately two-thirds of patients with colorectal cancer (CRC) undergo resection with curative intent; however, 30% to 50% of these patients experience recurrence. The concentration of cell-free DNA (cfDNA) before and after surgery may be related to the prognosis of patients with CRC, but there is limited information regarding cfDNA levels at the time of surgery. Here, we analyzed surgical cfDNA release using plasma samples from 30 colorectal cancer patients at three key points during surgery: preoperative (immediately before surgery), intraoperative (during surgery), and postoperative (at the end of surgery).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India.
Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Background: The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous pest damaging plants across over 100 families. It has multiple host-specialized lineages, including one colonizing Malvaceae (MA) and one colonizing Cucurbitaceae (CU). The mechanisms underlying these host relationships remain unknown.
View Article and Find Full Text PDFClin Case Rep
January 2025
Ear, Nose and Throat Centre, Xinjiang Uygur Autonomous Region People's Hospital Urumqi Xinjiang Uygur Autonomous Region China.
This report describes a rare case of a paraganglioma occurring beneath the vocal folds. During the preoperative biopsy, we encountered significant hemorrhage, forcing us to stop the procedure and preventing us from obtaining a definitive diagnosis. Despite these challenges, the eventual surgery had a good outcome.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.
Background: Gastroparesis following complete mesocolic excision (CME) can precipitate a cascade of severe complications, which may significantly hinder postoperative recovery and diminish the patient's quality of life. In the present study, four advanced machine learning algorithms-Extreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Machine (SVM), and -nearest neighbor (KNN)-were employed to develop predictive models. The clinical data of critically ill patients transferred to the intensive care unit (ICU) post-CME were meticulously analyzed to identify key risk factors associated with the development of gastroparesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!