The molecular dynamics of pancreatic ductal adenocarcinoma (PDAC) under chemotherapy remain incompletely understood. The widespread use of neoadjuvant chemotherapy (NAC) provides a unique opportunity to investigate PDAC samples post-chemotherapy. Leveraging a cohort from Fudan University Shanghai Cancer Center, encompassing PDAC samples with and without exposure to neoadjuvant albumin-bound paclitaxel and gemcitabine (AG), we have compiled data from single-cell and spatial transcriptomes, proteomes, bulk transcriptomes, and metabolomes, deepening our comprehension of the molecular changes in PDACs in response to chemotherapy. Metabolic flux analysis reveals that NAC induces a reprogramming of PDAC metabolic patterns and enhances immunogenicity. Notably, NAC leads to the downregulation of glycolysis and the upregulation of CD36. Tissue microarray analysis demonstrates that high CD36 expression is linked to poorer survival in patients receiving postoperative AG. Targeting CD36 synergistically improves the PDAC response to AG both in vitro and in vivo, including patient-derived preclinical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591062PMC
http://dx.doi.org/10.1016/j.xcrm.2023.101234DOI Listing

Publication Analysis

Top Keywords

pdac samples
8
pdac
5
targeting neoadjuvant
4
neoadjuvant chemotherapy-induced
4
chemotherapy-induced metabolic
4
metabolic reprogramming
4
reprogramming pancreatic
4
pancreatic cancer
4
cancer promotes
4
promotes anti-tumor
4

Similar Publications

In recent years, it has been shown that stroma compartment can favor tumor proliferation and aggressiveness. Although extensive research with network analyses such as Weighted Gene Co-expression Network Analysis (WGCNA) has been conducted on pancreatic cancer and its stromal components, WGCNA has not previously been applied to isolate and identify genes associated with the abundance of stroma and survival outcome from bulk RNA data. We investigated the gene expression profile and clinical information of 140 pancreatic ductal adenocarcinoma patients from TCGA.

View Article and Find Full Text PDF

Proteases are promising biomarkers for cancer early detection. Their enzymatic activity against peptide substrates allows for their straightforward detection using low-cost tests. However, the complexity of the human proteome makes it challenging to develop sensitive and selective tests against a specific protease biomarker.

View Article and Find Full Text PDF

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Quantitative site-specific N-glycosylation analysis reveals IgG glyco-signatures for pancreatic cancer diagnosis.

Clin Proteomics

December 2024

Department of Pancreatic Surgery and Institutes for Systems Genetics, West China Hospital, Sichuan University, Keyuan 4th Road, Gaopeng Avenue, Hi-tech Zone, Chengdu, Sichuan, 610041, China.

Background: Pancreatic cancer is a highly aggressive tumor with a poor prognosis due to a low early detection rate and a lack of biomarkers. Most of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). Alterations in the N-glycosylation of plasma immunoglobulin G (IgG) have been shown to be closely associated with the onset and development of several cancers and could be used as biomarkers for diagnosis.

View Article and Find Full Text PDF

Patient-derived organoids from pancreatic cancer after pancreatectomy: Feasibility and organoid take rate in treatment-naïve periampullary tumors.

Pancreatology

December 2024

Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway. Electronic address:

Background/objective: Patient-derived organoids (PDOs) have emerged as essential for ex vivo modelling for pancreatic cancer (PDAC) but reports on efficacy and organoid take rate are scarce. This study aimed to assess the feasibility of establishing PDOs from resected specimens in periampullary tumors.

Methods: Patients undergoing surgery for suspected periampullary cancer were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!