Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (K = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2023.106913 | DOI Listing |
Nat Microbiol
January 2025
Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Sustainable Sciences Institute, Managua, Nicaragua.
Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.
Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.
Parasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.
Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!