A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Closed-loop recovery of molybdenum and value-added reuse of tungsten from alloy waste in additive manufacturing. | LitMetric

Closed-loop recovery of molybdenum and value-added reuse of tungsten from alloy waste in additive manufacturing.

J Environ Manage

Collaborative Innovation Center of Capital Resource-Recycling Material Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, China. Electronic address:

Published: December 2023

As metal additive manufacturing (MAM) technology is booming in the aerospace sector, alternatives to the traditional production methods of metals such as mining, processing, and refining with severe emissions are urgently needed. This study proposed a closed-loop route for efficient recovery of molybdenum (Mo) and value-added reuse of tungsten (W) from Cr-Co-Ni-Mo-W alloy waste in MAM. The results showed that the leaching efficiency of Mo and W reached 99.3% and 99.9%, respectively, using the dual chemical-physical means of mixed-alkali roasting and leaching by microwave heating, while the discharge of waste liquor containing Cr was reduced. Leaching kinetic studies revealed that the metal leaching process was controlled by chemical reaction mechanism. Moreover, the 10%N1923 (primary amine)-5%TRPO (tri-alkyl phosphine oxide)-kerosene extraction system exhibited a synergistic extraction effect on Mo and W. After purification, Mo was recovered as Mo powder for MAM. Simultaneously, the recovered product of W, MnWO, was applied as a photocatalytic material with excellent degradation of methylene blue dye. Ultimately, the proposed method obtained recovery efficiencies of 98.4% and 99.3% for Mo and W, respectively, achieving efficient and environmentally-friendly reuse of these key metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119270DOI Listing

Publication Analysis

Top Keywords

recovery molybdenum
8
molybdenum value-added
8
value-added reuse
8
reuse tungsten
8
alloy waste
8
additive manufacturing
8
closed-loop recovery
4
tungsten alloy
4
waste additive
4
manufacturing metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!