TssJ-3 is an outer-membrane lipoprotein and is one of the key components of the type VI secretion system in Burkholderia pseudomallei. TssJ translocates effector proteins to target cells to induce innate immune response in the host. However, the tssJ gene has not been identified in B. pseudomallei and its function in this bacterium has not yet been characterized. tssJ-3 knockout and tssJ-3-complemented B. pseudomallei strains were constructed to determine the effects of tssJ-3 on bacterial growth, biofilm formation, flagellum synthesis, motility, host cell infection, and gene expression in B. pseudomallei. We found that the ΔtssJ-3 mutant strain of B. pseudomallei showed significantly suppressed biofilm formation, flagellum synthesis, bacterial growth, motility, and bacterial invasion into host cells (A549 cells). Furthermore, the ΔtssJ-3 mutation downregulated multiple key genes, including biofilm and flagellum-related genes in B. pseudomallei and induced interleukin-8 gene expression in host cells. These results suggest that tssJ-3, an important gene controlling TssJ-3 protein expression, has regulatory effects on biofilm formation and flagellum synthesis in B. pseudomallei. In addition, B. pseudomallei-derived tssJ-3 contributes to cell infiltration and intracellular replication. This study provides a molecular basis of tssJ-3 for developing therapeutic strategies against B. pseudomallei infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.09.091 | DOI Listing |
Plant Signal Behav
December 2025
Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.
The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Biology, Indiana University, Bloomington, Indiana, USA.
The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
Spo0A in Bacillus subtilis is activated by phosphorylation (Spo0A~P) upon starvation and differentially controls a set of genes involved in biofilm formation and sporulation. The spo0A gene is transcribed by two distinct promoters, a σ-recognized upstream promoter Pv during growth, and a σ-recognized downstream promoter Ps during starvation, and appears to be autoregulated by four Spo0A~P binding sites (0A1-4 boxes) localized between two promoters. However, the autoregulatory mechanisms and their impact on differentiation remain elusive.
View Article and Find Full Text PDFLangmuir
January 2025
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
Surface biofunctionalization with structurally perturbed albumin, as well as with other plasmatic proteins, inhibits the initial bacterial adhesion and biofilm formation, involved in numerous healthcare-associated infections. In fact, we have reported this protective effect with thermally treated plasmatic proteins, such as albumin and fibrinogen, adsorbed on flat silica surfaces. Here, we show that albumin biofunctionalization also works properly on flat Ti6Al4V substrates, which are widely used to fabricate medical devices.
View Article and Find Full Text PDFiScience
January 2025
Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China.
Dental caries is a common disease resulting from tooth demineralization caused by bacterial plaque. Probiotics have shown great potential against caries by regulating the balance of oral flora. However, obstacles such as poor colonization and lysozyme sensitivity in oral cavity hinder their further application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!