In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587638 | PMC |
http://dx.doi.org/10.1016/j.psj.2023.103105 | DOI Listing |
Biol Reprod
January 2025
Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA.
In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos.
View Article and Find Full Text PDFFront Bioinform
January 2025
Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China.
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).
View Article and Find Full Text PDFFront Immunol
January 2025
Integrative Immunobiology Department, Duke University, Durham, NC, United States.
Introduction: The regulation of expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage.
View Article and Find Full Text PDFFront Genet
January 2025
Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).
View Article and Find Full Text PDFDrug Chem Toxicol
January 2025
Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye.
The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!