Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core-shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core-shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c02614 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!