A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative calculation of gases generation during low-temperature oxidation of coal. | LitMetric

Quantitative calculation of gases generation during low-temperature oxidation of coal.

Environ Sci Pollut Res Int

Key Laboratory of Safe and Effective Coal Mining, Anhui University of Science and Technology, Ministry of Education, Huainan, 232001, People's Republic of China.

Published: November 2023

The gases evolution during the low-temperature oxidation of coal is an essential parameter used to assess the state of coal oxidation and to estimate the gaseous pollutants. However, the current semi-quantitative method, which employs gas concentration as the measurement standard, is flawed. This paper presents a quantitative calculation method for gas products during coal oxidation. N is used as the tracer gas in the experiment, because nitrogen is an inert gas that will not participate in the reaction, and the amount of matter will not change in the reaction. According to the formula [Formula: see text], the corresponding mass flow rates of each gases component were calculated, and the gas yields during the reaction period were determined by comprehensive calculation. To this end, experiments were conducted on the low-temperature oxidation of coal using a flow reactor. After undergoing quantitative calculations, the main gas products' mass flow rates, yields, and energies, including CO, CO, CH, CH, CH, CH, and CH between 30 and 180 °C were obtained. The findings showed that CO > CO > CH was generated in all the coal samples. The amount of gases produced in the low-temperature oxidation of coal is proportional to the level of oxygen concentration. When the oxygen concentration ranges from 0 to 21%, the gaseous production of MTH coal ranges from 381.44 g/ton to 8562.80 g/ton. The results of gaseous energy calculations showed that the energy loss for low temperature oxidation of the four coal samples ranged from 4334.14~26,772.73 kJ/ton under air atmosphere. Energy loss is also significantly affected by the oxygen concentration, and the energy loss of MTH coal increases significantly from 520.52 kJ/ton at 0% oxygen concentration to 26,772.73 kJ/ton at 21% oxygen concentration, an increase of about 50 times. Significantly, this method not only reflects the real gas evolution during low-temperature oxidation of coal but also computes the gas emission and energy loss, which is crucial for studying the mechanism of coal spontaneous combustion and assessing gases pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30219-yDOI Listing

Publication Analysis

Top Keywords

oxidation coal
24
low-temperature oxidation
20
oxygen concentration
20
energy loss
16
coal
12
quantitative calculation
8
oxidation
8
evolution low-temperature
8
coal oxidation
8
gas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!